首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function.  相似文献   

2.
The centromere of Kluyveromyces lactis was delimited to a region of approximately 280 bp, encompassing KICDEI, II, and III. Removal of 6 bp from the right side of KlCDEIII plus flanking sequences abolished centromere function, and removal of 5 bp of KICDEI and flanking sequences resulted in strongly reduced centromere function. Deletions of 20–80 bp from KlCDEII resulted in a decrease in plasmid stability, indicating that KlCDEII must have a certain length for proper centromere function. Centromeres of K. lactis do not function in Saccharomyces cerevisiae and vice versa. Adapting the length of K1CDEII to that of ScCDEII did not improve KlCEN function in S. cerevisiae, while doubling the ScCDEII length did not improve ScCEN function in K. lactis. Thus the difference in CDEII length is not in itself responsible for the species specificity of the centromeres from each of the two species of budding yeast. A chimeric K. lactis centromere with ScCDEIII instead of KlCDEIII was no longer functional in K. lactis, but did improve plasmid stability in S. cerevisiae, although to a much lower level then a wild-type ScCEN. This indicates that the exact CDEIII sequence is important, and suggests that the flanking AT-rich CDEII has to conform to specific sequence requirements.  相似文献   

3.
Saccharomyces cerevisiae centromeres contain a conserved region ranging from 111 to 119 base pairs (bp) in length, which is characterized by the three conserved DNA elements CDEI, CDEII, and CDEIII. We isolated a 125-bp CEN6 DNA fragment (named ML CEN6) containing only these conserved elements and assayed it completely separated from its chromosomal context on circular minichromosomes and on a large linear chromosome fragment. The results show that this 125-bp CEN6 DNA fragment is by itself sufficient for complete mitotic and meiotic centromere functions.  相似文献   

4.
The centromere of Kluyveromyces lactis was delimited to a region of approximately 280 bp, encompassing KICDEI, II, and III. Removal of 6 bp from the right side of KlCDEIII plus flanking sequences abolished centromere function, and removal of 5 bp of KICDEI and flanking sequences resulted in strongly reduced centromere function. Deletions of 20–80 bp from KlCDEII resulted in a decrease in plasmid stability, indicating that KlCDEII must have a certain length for proper centromere function. Centromeres of K. lactis do not function in Saccharomyces cerevisiae and vice versa. Adapting the length of K1CDEII to that of ScCDEII did not improve KlCEN function in S. cerevisiae, while doubling the ScCDEII length did not improve ScCEN function in K. lactis. Thus the difference in CDEII length is not in itself responsible for the species specificity of the centromeres from each of the two species of budding yeast. A chimeric K. lactis centromere with ScCDEIII instead of KlCDEIII was no longer functional in K. lactis, but did improve plasmid stability in S. cerevisiae, although to a much lower level then a wild-type ScCEN. This indicates that the exact CDEIII sequence is important, and suggests that the flanking AT-rich CDEII has to conform to specific sequence requirements.  相似文献   

5.
Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for centromere function. Mutations affecting the segregation properties of centromeres also exhibit altered chromatin structures in vivo. Thus the structure, as delineated by nuclease digestion, correlated with functional centromeres. We have determined the contribution of histone proteins to this unique structural organization. Nucleosome depletion by repression of either histone H2B or H4 rendered the cell incapable of chromosome segregation. Histone repression resulted in increased nuclease sensitivity of centromere DNA, with up to 40% of CEN3 DNA molecules becoming accessible to nucleolytic attack. Nucleosome depletion also resulted in an alteration in the distribution of nuclease cutting sites in the DNA surrounding CEN3. These data provide the first indication that authentic nucleosomal subunits flank the centromere and suggest that nucleosomes may be the central core of the centromere itself.  相似文献   

6.
Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains   总被引:34,自引:5,他引:29       下载免费PDF全文
The functional sequence from the centromere in chromosome VI ( CEN6 ) of Saccharomyces cerevisiae was narrowed down to a stretch of 500 bp by a Bal31 deletion approach. The DNA sequence in this region shows three long stretches, 40 bp, 96 bp, and 63 bp of 85% and more AT pairs and a pyrimidine purine bias in the individual single strands. We assume that the CEN6 functional sequences encompass these AT-rich stretches because this part shows striking similarities to sequence elements common to CEN3 and CEN11 DNA. A strain comparison revealed that CEN6 DNA sequences are confined to the Saccharomyces genus and probably only to the S. cerevisiae species. CEN6 is not highly conserved within S. cerevisiae strains because EcoRI and HindIII restriction site variants are found with high frequency.  相似文献   

7.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

8.
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.  相似文献   

9.
Centromere DNA from 11 of the 16 chromosomes of the yeast Saccharomyces cerevisiae have been analyzed and reveal three sequence elements common to each centromere, referred to as conserved centromere DNA elements (CDE). The adenine-plus-thymine (A + T)-rich central core element, CDE II, is flanked by two short conserved sequences, CDE I (8 base pairs [bp]) and CDE III (25 bp). Although no consensus sequence exists among the different CDE II regions, they do have three common features of sequence organization. First, the CDE II regions are similar in length, ranging from 78 to 86 bp measured from CDE I to the left boundary of CDE III. Second, the base composition is always greater than 90% A + T. Finally, the A and T residues in these segments are often arranged in runs of A and runs of T residues, sometimes with six or seven bases in a stretch. We constructed insertion, deletion, and replacement mutations in the CDE II region of the centromere from chromosome III, CEN3, designed to investigate the length and sequence requirements for function of the CDE II region of the centromere. We analyzed the effect of these altered centromeres on plasmid and chromosome segregation in S. cerevisiae. Our results show that increasing the length of CDE II from 84 to 154 bp causes a 100-fold increase in chromosome nondisjunction. Deletion mutations removing segments of the A + T-rich CDE II DNA also cause aberrant segregation. In some cases partial function could be restored by replacing the deleted DNA with fragments whose primary sequence or base composition is very different from that of the wild-type CDE II DNA. In addition, we found that identical mutations introduced into different positions in CDE II have very similar effects.  相似文献   

10.
We have analysed the centromere 1 (CEN1) of Arabidopsis thaliana by integration of genetic, sequence and fluorescence in situ hybridisation (FISH) data. CEN1 is considered to include the centromeric core and the flanking left and right pericentromeric regions, which are distinct parts by structural and/or functional properties. CEN1 pericentromeres are composed of different dispersed repetitive elements, sometimes interrupted by functional genes. In contrast the CEN1 core is more uniformly structured harbouring only two different repeats. The presented analysis reveals aspects concerning distribution and effects of the uniformly shaped heterochromatin, which covers all CEN1 regions. A lethal mutation tightly linked to CEN1 enabled us to measure recombination frequencies within the heterochromatin in detail. In the left pericentromere, the change from eu- to heterochromatin is accompanied by a gradual change in sequence composition but by an extreme change in recombination frequency (from normal to 53-fold decrease) which takes place within a small region spanning 15 kb. Generally, heterochromatin is known to suppress recombination. However, the same analysis reveals that left and right pericentromere, though similar in sequence composition, differ markedly in suppression (53-fold versus 10-fold). The centromeric core exhibits at least 200-fold if not complete suppression. We discuss whether differences in (fine) composition reflect quantitative and qualitative differences in binding sites for heterochromatin proteins and in turn render different functional properties. Based on the presented data we estimate the sizes of Arabidopsis centromeres. These are typical for regional centromeres of higher eukaryotes and range from 4.4 Mb (CEN1) to 3.55 Mb (CEN4).  相似文献   

11.
Centromeres are essential components of eucaryotic chromosomes. In budding yeast, up to now, 15 of the 16 centromere DNAs have been isolated. Here we report the functional isolation and characterization of CEN8, the last of the yeast centromeres missing. The centromere consensus sequence for the 16 chromosomes in this organism is presented.  相似文献   

12.
We investigated the structural requirements of the centromere from chromosome III (CEN3) of Saccharomyces cerevisiae by analyzing the ability of chromosomes with CEN3 mutations to segregate properly during meiosis. We analyzed diploid cells in which one or both copies of chromosome III carry a mutant centromere in place of the wild-type centromere and found that some alterations in the length, base composition and primary sequence characteristics of the central A+T-rich region (CDE II) of the centromere had a significant effect on the ability of the chromosome to segregate properly through meiosis. Chromosomes containing mutations which delete a portion of CDE II showed a high rate of premature disjunction at meiosis I. Chromosomes containing point mutations in CDE I or lacking CDE I appeared to segregate properly through meiosis; however, plasmids carrying centromeres with CDE I completely deleted showed an increased frequency of segregation to nonsister spores.  相似文献   

13.
The centromeres of a genome separate in a sequential, nonrandom manner that is apparently dependent upon the quantity and quality of pericentric heterochromatin. It is becoming increasingly clear that the biological properties of a centromere depend upon its physicochemical makeup, such as its tertiary structure, and not necessarily on its particular nucleotide sequence. To test this idea we altered the physical state of the AT-rich pericentric heterochromatin of mouse with Hoechst 33258 (bis-benzimidazole) and studied a biological parameter, viz., sequence of separation. We report that an alteration in the physical state of heterochromatin, i.e., decondensation, is accompanied by aberrations in the pattern of centromere separation. The most dramatic effect seems to be on chromosomes with large blocks of heterochromatin. Many chromosomes with large blocks of heterochromatin that, in untreated cells, separate late tend to separate early. Decondensation with Hoechst 33258 does not seem to alter the sequence of separation of inactive centromeres relative to that of active centromeres. These data indicate that alteration in the physical parameters of the pericentric heterochromatin might dispose the centromeres to errors. It is likely that this aberration results from early replication of the pericentric heterochromatin associated with active centromeres. Received: 24 August 1998; in revised form: 24 August 1998 / Accepted: 28 August 1998  相似文献   

14.
We developed a novel approach to quantitate the heterogeneity of centromere number in yeast, and the cellular capacity for excess centromeres. Small circular plasmids were constructed to contain theCUP1 metallothionein gene,ARS1 (autonomously replicating sequence) and a conditionally functional centromere (GAL1–GAL10 promoter controlled centromere). TheCUP1 gene provided a gene dosage marker, and therefore a genetic determinant of plasmid copy number. Growth of cells on glucose is permissive for centromere function, while growth on galactose renders the centromere nonfunctional and the plasmids are segregated in an asymmetric fashion. We identified lines of cells containing increased numbers of plasmids after transformation. Cell lines containing as many as five to ten active centromeres are stably maintained in the absence of genetic selection. Thus haploid yeast cells can tolerate a 50% increase in their centromere number without affecting progression through the cell cycle. This system provides the opportunity to address issues of specific cellular controls on centromere copy number.  相似文献   

15.
Role of conserved sequence elements in yeast centromere DNA.   总被引:37,自引:2,他引:35       下载免费PDF全文
Conserved sequence features in Saccharomyces cerevisiae CEN DNA are confined to a region of approximately 120 bp. The highly conserved 8 bp at the left (PuTCACPuTG) constitute the left boundary of a functional CEN DNA as shown by the analysis of a series of Bal31 deletions. The right boundary of a functional CEN DNA lies within the conserved 25 bp at the right (TGT-T-TG--TTCCGAA-----AAA) or a few base pairs further outside of the 120-bp region. One mutant which just lacks the left conserved DNA element PuTCACPuTG can still assemble into a partially functional mitotic centromere and it assembles into a well functioning meiotic centromere. The sequences between the two conserved terminal DNA elements can be increased in length (+50%) or in GC content (from 6% to 12%) without measurable changes in mitotic and meiotic segregations of plasmids carrying such CEN mutations. The naturally occurring length and GC content of this centromere DNA sequence element is, therefore, not essential for centromere function. We discuss the possibility that it partly acts as a hinge region between two domains. Finally, we tested integrations of CEN DNA into the genome and found a toleration of wild-type CEN6 DNA when present 3' of the LYS2 gene.  相似文献   

16.
Kerry S. Bloom  John Carbon 《Cell》1982,29(2):305-317
We have examined the chromatin structure of the centromere regions of chromosomes III and XI in yeast by using cloned functional centromere DNAs (CEN3 and CEN11) as labeled probes. When chromatin from isolated nuclei is digested with micrococcal nuclease and the resulting DNA fragments separated electrophoretically and blotted to nitrocellulose filters, the centromeric nucleosomal sub-units are resolved into significantly more distinct ladders than are those from the bulk of the chromatin. A discrete protected region of 220–250 bp of CEN sequence flanked by highly nuclease-sensitive sites was revealed by mapping the exact nuclease cleavage sites within the centromeric chromatin. On both sides of this protected region, highly phased and specific nuclease cutting sites exist at nucleosomal intervals (160 bp) for a total length of 12–15 nucleosomal subunits. The central protected region in the chromatin of both centromeres spans the 130 bp segment that exhibits the highest degree of sequence homology (71%) between functional CEN3 and CEN11 DNAs. This unique chromatin structure is maintained on CEN sequences introduced into yeast on autonomously replicating plasmids, but is not propagated through foreign DNA sequences flanking the inserted yeast DNA.  相似文献   

17.
Centromeres form specialized chromatin structures termed kinetochores which are required for accurate segregation of chromosomes. DNA lesions might disrupt protein-DNA interactions, thereby compromising segregation and genome stability. We show that yeast centromeres are heavily resistant to removal of UV-induced DNA lesions by two different repair systems, photolyase and nucleotide excision repair. Repair resistance persists in G(1)- and G(2)/M-arrested cells. Efficient repair was obtained only by disruption of the kinetochore structure in a ndc10-1 mutant, but not in cse4-1 and cbf1 Delta mutants. Moreover, UV photofootprinting and DNA repair footprinting showed that centromere proteins cover about 120 bp of the centromere elements CDEII and CDEIII, including 20 bp of flanking CDEIII. Thus, DNA lesions do not appear to disrupt protein-DNA interactions in the centromere. Maintaining a stable kinetochore structure seems to be more important for the cell than immediate removal of DNA lesions. It is conceivable that centromeres are repaired by postreplication repair pathways.  相似文献   

18.
A centromere (CEN) in Saccharomyces cerevisiae consists of approximately 150 bp of DNA and contains 3 conserved sequence elements: a high A + T region 78-86 bp in length (element II), flanked on the left by a conserved 8-bp element I sequence (PuTCACPuTG), and on the right by a conserved 25-bp element III sequence. We have carried out a structure-function analysis of the element I and II regions of CEN3 by constructing mutations in these sequences and subsequently determining their effect on mitotic and meiotic chromosome segregation. We have also examined the mitotic and meiotic segregation behavior of ARS plasmids containing the structurally altered CEN3 sequences. Replacing the periodic tracts of A residues within element II with random A + T sequences of equal length increases the frequency of mitotic chromosome nondisjunction only 4-fold; whereas, reducing the A + T content of element II while preserving the length results in a 40-fold increase in the frequence of chromosome nondisjunction. Structural alterations in the element II region that do not decrease the overall length have little effect on the meiotic segregation behavior of the altered chromosomes. Centromeres containing a deletion of element I or a portion of element II retain considerable mitotic activity, yet plasmids carrying these same mutations segregate randomly during meiosis I, indicating these sequences to be essential for maintaining attachment of the replicated sister chromatids during the first meiotic division. The presence of an intact element I sequence properly spaced from the element III region is absolutely essential for proper meiotic function of the centromere.  相似文献   

19.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

20.
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号