首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.  相似文献   

2.
3.
Formation of cilia, microtubule‐based structures that function in propulsion and sensation, requires Kif3a, a subunit of Kinesin II essential for intraflagellar transport (IFT). We have found that, Kif3a is also required to organize centrioles. In the absence of Kif3a, the subdistal appendages of centrioles are disorganized and lack p150Glued and Ninein. Consequently, microtubule anchoring, centriole cohesion and basal foot formation are abrogated by loss of Kif3a. Kif3a localizes to the mother centriole and interacts with the Dynactin subunit p150Glued. Depletion of p150Glued phenocopies the effects of loss of Kif3a, indicating that Kif3a recruitment of p150Glued is critical for subdistal appendage formation. The transport functions of Kif3a are dispensable for subdistal appendage organization as mutant forms of Kif3a lacking motor activity or the motor domain can restore p150Glued localization. Comparison to cells lacking Ift88 reveals that the centriolar functions of Kif3a are independent of IFT. Thus, in addition to its ciliogenic roles, Kif3a recruits p150Glued to the subdistal appendages of mother centrioles, critical for centrosomes to function as microtubule‐organizing centres.  相似文献   

4.
CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.  相似文献   

5.
Outer dense fibre 2 (Odf2; also known as cenexin) was initially identified as a main component of the sperm tail cytoskeleton, but was later shown to be a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Here we show that Odf2 expression is suppressed in mouse F9 cells when both alleles of Odf2 genes are deleted. Unexpectedly, the cell cycle of Odf2(-/-) cells does not seem to be affected. Immunofluorescence and ultrathin-section electron microscopy reveals that in Odf2(-/-) cells, distal/subdistal appendages disappear from mother centrioles, making it difficult to distinguish mother from daughter centrioles. In Odf2(-/-) cells, however, the formation of primary cilia is completely suppressed, although approximately 25% of wild-type F9 cells are ciliated under the steady-state cell cycle. The loss of primary cilia in Odf2(-/-) F9 cells can be rescued by exogenous Odf2 expression. These findings indicate that Odf2 is indispensable for the formation of distal/subdistal appendages and the generation of primary cilia, but not for other cell-cycle-related centriolar functions.  相似文献   

6.
Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell.  相似文献   

7.
Centrosomes comprise a pair of centrioles surrounded by an amorphous network of pericentriolar material (PCM). In certain stem cells, the two centrosomes differ in size, and this appears to be important for asymmetric cell division [1, 2]. In some cases, centrosome asymmetry is linked to centriole age because the older, mother centriole always organizes more PCM than the daughter centriole, thus ensuring that the mother centriole is always retained in the stem cell after cell division [3]. This has raised the possibility that an "immortal" mother centriole may help maintain stem cell fate [4, 5]. It is unclear, however, how centrosome size asymmetry is generated in stem cells. Here we provide compelling evidence that centrosome size asymmetry in Drosophila neuroblasts is generated by the differential regulation of Cnn incorporation into the PCM at mother and daughter centrioles. Shortly after centriole separation, mother and daughter centrioles organize similar amounts of PCM, but Cnn incorporation is then rapidly downregulated at the mother centriole, while it is maintained at the daughter centriole. This ensures that the daughter centriole maintains its PCM and so its position at the apical cortex. Thus, the?daughter centriole, rather than an "immortal" mother centriole, is ultimately retained in these stem cells.  相似文献   

8.
The NIMA-related kinase Nek2 promotes centrosome separation at the G2/M transition and, consistent with this role, is known to be concentrated at the proximal ends of centrioles. Here, we show by immunofluorescence microscopy that Nek2 also localises to the distal portion of the mother centriole. Its accumulation at this site is cell cycle-dependent and appears to peak in late G2. These findings are consistent with previous data implicating Nek2 in promoting reorganisation of centrosome-anchored microtubules at the G2/M transition, given that microtubules are anchored at the subdistal appendages of the mother centriole in interphase. In addition, we report that siRNA-mediated depletion of Nek2 compromises the ability of cells to resorb primary cilia before the onset of mitosis, while overexpression of catalytically active Nek2A reduces ciliation and cilium length in serum-starved cells. Based on these findings, we propose that Nek2 has a role in promoting cilium disassembly at the onset of mitosis. We also present evidence that recruitment of Nek2 to the proximal ends of centrioles is dependent on one of its substrates, the centrosome cohesion protein C-Nap1.  相似文献   

9.
Centrioles in the cell cycle. I. Epithelial cells   总被引:20,自引:14,他引:6       下载免费PDF全文
A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.  相似文献   

10.
11.
It has been shown that after enucleation of the PE cells with cytochalasin D the centrioles remain in approximately 80% of cytoplasts. Some cytoplasts contain only single centriole, either a mother (active) of a daughter (inactive) one. 20% cytoplasts have no centrioles. 2h after enucleation the centrosome structure in the cytoplasts did not differ from that in normal cells. 14-16 h after enucleation in many cytoplasts large secondary lysosomes and lipid droplets appeared around the centrosome. At this time in some cytoplasts in the centrosome we observed free microtubule convergence foci. 14-16 h after the enucleation, some cytoplasts have doubling centrioles. Under the influence of ouabain (30 min), the number of active centrioles oriented perpendicularly to the substrate plane in the cytoplasts increased. We suggest that the preferentially perpendicular orientation of centrioles to the substrate plane does not depend on the nuclear activity.  相似文献   

12.
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.  相似文献   

13.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell-cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G1/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G1 phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated down-regulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.  相似文献   

14.
Centrosome duplication is marked by discrete changes in centriole structure that occur in lockstep with cell cycle transitions. We show that mitotic regulators govern steps in centriole replication in Drosophila embryos. Cdc25(string), the expression of which initiates mitosis, is required for completion of daughter centriole assembly. Cdc20(fizzy), which is required for the metaphase-anaphase transition, is required for timely disengagement of mother and daughter centrioles. Stabilization of mitotic cyclins, which prevents exit from mitosis, blocks assembly of new daughter centrioles. Common regulation of the nuclear and centrosome cycles by mitotic regulators may ensure precise duplication of the centrosome.  相似文献   

15.
Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization.  相似文献   

16.
Nek2A is a cell cycle-regulated kinase of the never in mitosis A (NIMA) family that is highly enriched at the centrosome. One model for Nek2A function proposes that it regulates cohesion between the mother and daughter centriole through phosphorylation of C-Nap1, a large coiled-coil protein that localizes to centriolar ends. Phosphorylation of C-Nap1 at the G2/M transition may trigger its displacement from centrioles, promoting their separation and subsequent bipolar spindle formation. To test this model, we generated tetracycline-inducible cell lines overexpressing wild-type and kinase-dead versions of Nek2A. Live cell imaging revealed that active Nek2A stimulates the sustained splitting of interphase centrioles indicative of loss of cohesion. However, this splitting is accompanied by only a partial reduction in centriolar C-Nap1. Strikingly, induction of kinase-dead Nek2A led to formation of monopolar spindles with unseparated spindle poles that lack C-Nap1. Furthermore, kinase-dead Nek2A interfered with chromosome segregation and cytokinesis and led to an overall change in the DNA content of the cell population. These results provide the first direct evidence in human cells that Nek2A function is required for the correct execution of mitosis, most likely through promotion of centrosome disjunction. However, they suggest that loss of centriole cohesion and C-Nap1 displacement may be distinct mitotic events.  相似文献   

17.
Centrobin resides in daughter centriole and play a critical role in centriole duplication. Nucleation and stabilization of microtubules are known biological activities of centrobin. Here, we report a specific localization of centrobin outside the centrosome. Centrobin was associated with the stable microtubules. In hippocampal cells, centrobin formed cytoplasmic dots in addition to the localization at both centrosomes with the mother and daughter centrioles. Such specific localization pattern suggests that cytoplasmic centrobin is not just a reserved pool for centrosomal localization but also has a specific role in the cytoplasm. In fact, centrobin enhanced microtubule formation outside as well as inside the centrosome. These results propose specific roles of the cytoplasmic centrobin for noncentrosomal microtubule formation in specific cell types and during the cell cycle.  相似文献   

18.
The structure of the cellular center in polyploid hepatocytes of intact and regenerating liver of adult mice has been studied. It was shown that the structure of the centriolar complex depends on stages of the cellular cycle. No pericentriolar structures (such as satellites, appendages and others) and cytoplasmic microtubules were found in the centriolar complex within G0-period. The satellites and appendages are formed in the half of the centrioles within G1-period. The microtubules can branch off some satellites; the daughter centrioles begin to form within S-period; there are diplosomes in the cells within G2-period, some mother centrioles are surrounded with the fine fibrillar halo. It is concluded that the structure of the centriolar complex within G0-period is distinguished by that within G1-period. The structure of the centriolar complex in polyploid hepatocytes has the same feature of reorganization in certain interphase periods of the cell cycle as in diploid cells of some cultured cells and the thyroid epithelium.  相似文献   

19.
Primary cilia (PC) function as microtubule-based sensory antennae projecting from the surface of many eukaryotic cells. They play important roles in mechano- and chemosensory perception and their dysfunction is implicated in developmental disorders and severe diseases. The basal body that functions in PC assembly is derived from the mature centriole, a component of the centrosome. Through a small interfering RNA screen we found several centrosomal proteins (Ceps) to be involved in PC formation. One newly identified protein, Cep164, was indispensable for PC formation and hence characterized in detail. By immunogold electron microscopy, Cep164 could be localized to the distal appendages of mature centrioles. In contrast to ninein and Cep170, two components of subdistal appendages, Cep164 persisted at centrioles throughout mitosis. Moreover, the localizations of Cep164 and ninein/Cep170 were mutually independent during interphase. These data implicate distal appendages in PC formation and identify Cep164 as an excellent marker for these structures.  相似文献   

20.
The structure of centrosome in non-synchronous L-cells culture during the cell cycle has been studied. In mitosis, mother and daughter centrioles, which differ in their ultrastructure, are located perpendicularly in the pole of the spindle. Microtubules, meeting in the pole area terminate mainly in electron-dense clottings of fibrillar matter surrounding the diplosoma. In telophase, disjunction of mother and daughter centrioles begins. At the beginning of G1-period, centrioles move off from each other for several micron, and then draw together again without forming diplosome. Pericentriolar satellites form on mother centriole of some cells at this time, they disappear at the beginning of S-period, replication of centrioles begins; daughter centrioles reach the size of mother centrioles in anaphase. During growth and maturation, centrioles in L-cells undergo structural changes similar to those described for SPEV cells (Vorob'ev, Chentsov, 1982). Several types of meeting points for microtubules exist in L-cells during the whole interphase: surface of centrioles per se, pericentriolar satellites, free foci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号