共查询到20条相似文献,搜索用时 78 毫秒
1.
精卵融合是有性生殖中最为关键的事件之一,因此对该过程分子机制的理解具有十分重要意义。已经发现多种蛋白质涉及到这个重要的过程,主要包括卵子表面的CD9、GPI锚定蛋白和整合素等,精子表面的附睾蛋白DE、Izumo和ADAM家族成员等,它们通过特异性的识别和结合而辅助完成了精卵融合。这些进展对开发新的用于生殖调节或不育诊断和治疗技术、药物提供了保证。 相似文献
2.
3.
4.
5.
最近基因打靶研究揭示出了参与精卵结合和融合的各种分子。精子中ADAMs因子(是含有裂解蛋白和金属蛋白酶结构域蛋白质家族),包括繁殖因子α、繁殖因子β以及cyritestin,经过研究已经发现它们对精卵结合有重要作用,而对精卵的融合不重要。通过研究推测出其受体为卵母细胞整合蛋白,其对精卵交互作用是必需的。最近,一些研究表明CD9和卵母细胞上GPI锚定蛋白(glycosyl phosphatidyl inositol糖基磷脂酰肌醇),以及精子上的附睾蛋白DE均是精卵融合过程中的侯选因子,如果缺乏这些蛋白质分子或其作用受到干扰将导致精卵融合机制紊乱。综述重点讨论了参与精卵交互作用的相关分子的最新研究进展。 相似文献
6.
日本鳗鲡精卵的超微结构以及受精过程观察 总被引:1,自引:0,他引:1
通过扫描电镜和透射电镜对经人工催产获得的日本鳗鲡(Anguilla japonica)精子、卵膜的超微结构以及受精过程进行了观察。实验观察到,除一般硬骨鱼类的精子特性外,日本鳗鲡精子有其独特的结构。精子头部为不规则的梨形,有背腹面之分。一个巨大的球形线粒体位于头部顶端。精子中段向后伸出一支根,支根位于袖套腔外精子的背侧,前端向精子头部线粒体方向延伸,支根的微管结构为"8+2"结构,并在精子入卵过程中起到切断鞭毛的作用。精子的尾部由鞭毛和鞭毛末端的结组成。鞭毛横切面呈圆形,无侧鳍,鞭毛微管结构为"9+0"结构。受精卵的整个表面密布着无规律延伸的脊、脊包围形成的窝和窝中的孔所组成的脊孔复合体,但无典型特征的受精孔。受精卵超薄切片观察发现,日本鳗鲡卵膜分为外层壳膜和内层卵黄膜。壳膜与卵黄膜间为卵周隙。壳膜只观察到放射带,未见透明带。放射带可分为三个亚层:最外层为脊孔复合体的脊,中间层为皱纹层,最内层为致密的平滑层。脊孔复合体的孔横穿整个放射带,在放射带内层形成一个乳突状结构。日本鳗鲡的卵膜不仅具有保护卵子的作用,而且还参与了受精。实验还通过扫描电镜观察了日本鳗鲡精子的入卵过程。观察结果认为:日本鳗鲡精子入卵过程可分为卵膜对精子的吸引、精子对卵膜的锚定、精核的进入和孔封闭等4个阶段。但由于研究只观察到受精过程中日本鳗鲡精子和卵膜的形态变化,因此对精子穿过卵膜的方式和特征等尚需做进一步的研究。整个受精过程为1min30s左右。此外,研究还探讨了日本鳗鲡精子结构的特殊性和受精过程的特殊性,为进一步突破日本鳗鲡人工育苗技术提供了理论依据。
相似文献
7.
用扫描电镜对唇成熟卵子及早期精子入卵过程进行观察.结果 显示,唇成熟卵子在动物极中央有一深凹陷的表面光滑的精孔器,其外径2.512 μm,内径2.330 μm,精子直径1.567 μm.混匀的精卵刚遇水时,没有精子进入精孔器.受精后1 s,精孔器内出现精子.受精后5 s,组织切片显示,精子已经进入卵子内,并形成具有强烈抑制多精入卵作用的受精锥.受精后10 s,精子在精孔器前庭集结,尚未形成受精塞.受精后20 s,在精孔器内形成受精塞.受精塞没有阻塞精孔管,经分析它不是来源于皮层反应产物.受精塞形成后,可以吸附入卵的精子,这对多精入卵有积极的抑制作用;精子尾部在入卵过程中相互缠绕,这也是减少多精入卵的重要机制.受精后30 s, 受精塞和吸附的精子向精孔器外移动.受精后50 s, 受精塞和吸附的精子堵塞精孔器.受精后60 s, 受精塞吸附的精子开始解体,但是由于精孔管未封闭,还有精子通过精孔管进入到质膜.在人工受精过程中,卵子的单精受精屏障会因其周围精子密度大、精子与卵子距离短、精子运动速度快而被打破,从而导致这些卵子出现多精入卵的现象.受精后80 s, 精孔管仍然没有封闭,精孔器附近的精子明显出现活动能力的差异:精孔器外面的精子活动能力最强,精孔管旁边的精子活动能力较弱;精孔管外堆积的精子活性消失,受精塞吸附的精子已开始解体,经初步分析,这可能是进入其内的精子耗能有所差异的结果.受精后100 s,受精塞吸附的精子解体. 相似文献
8.
三角鲂(Megalobrama terminalis)精子与青鱼(Mylopharyngodon piceus)卵子的受精细胞学研究 总被引:12,自引:0,他引:12
以青鱼(Mylopharyngodon piccus)为母本和三角鲂(Megalobrama terminalis)为父本的杂交虽是不同亚科的远缘杂交,但有正常的受精细胞学程序和常规的细胞分裂(卵裂)方式。这些实验结果,为开展鱼类远缘杂交提供了受精生物学的理论基础;同时还证实鱼类远缘杂交的异种精子不仅有激活卵子的作用,而且参与了遗传物质的组成,使父本的性状能够在杂种后代表现出来。实践证明,鱼类遗传育种可以通过远缘杂交的途径获得杂种优势。青鲂杂种一代既具有母本青鱼的性状,也兼有父本三角鲂的特征,通过养殖试验已在渔业生产中取得成效(拟另文发表)。 相似文献
9.
金鱼精子入卵过程的扫描电镜观察 总被引:22,自引:0,他引:22
本文采用扫描电镜观察了金鱼(Carassius auratus)卵壳膜(chorion)表面结构和精子入卵过程。在壳膜的卵膜孔(micropyle)区有5—10条沟和嵴。位于精孔管下面,卵的质膜为一束较长的微绒毛组成的精子穿入部(sperm entry site)。授精5s,精子头的顶部已附着于精子穿入部,随即两者的质膜发生融合,而围于精子头部四周的微绒毛迅速伸长形成一受精锥,它不断将精子头部包裹。授精110s,精子的头部和颈部已完全进入卵内,受精锥本身也渐趋消失,但精子尾部仍平躺于卵的表面。皮层小泡是在授精30s后才开始破裂并释放其内含物,导致卵子表面呈蜂窝状,并在无膜内表面附着了大量球状物。 相似文献
10.
用扫描电镜对唇鳃成熟卵子及早期精子人卵过程进行观察。结果显示,唇鲋成熟卵子在动物极中央有一深凹陷的表面光滑的精孔器,其外径2.512μm,内径2.330μm,精子直径1.567μm。混匀的精卵刚遇水时,没有精子进入精孔器。受精后1s,精孔器内出现精子。受精后5S,组织切片显示,精子已经进入卵子内,并形成具有强烈抑制多精人卵作用的受精锥。受精后10S,精子在精孔器前庭集结,尚未形成受精塞。受精后20S,在精孔器内形成受精塞。受精塞没有阻塞精孔管,经分析它不是来源于皮层反应产物。受精塞形成后,可以吸附人卵的精子,这对多精入卵有积极的抑制作用;精子尾部在入卵过程中相互缠绕,这也是减少多精入卵的重要机制。受精后30s,受精塞和吸附的精子向精孔器外移动。受精后50S,受精塞和吸附的精子堵塞精孔器。受精后60s,受精塞吸附的精子开始解体,但是由于精孔管未封闭,还有精子通过精孔管进入到质膜。在人工受精过程中,卵子的单精受精屏障会因其周围精子密度大、精子与卵子距离短、精子运动速度快而被打破,从而导致这些卵子出现多精入卵的现象。受精后80s,精孔管仍然没有封闭,精孔器附近的精子明显出现活动能力的差异:精孔器外面的精子活动能力最强,精孔管旁边的精子活动能力较弱;精孔管外堆积的精子活性消失,受精塞吸附的精子已开始解体,经初步分析,这可能是进入其内的精子耗能有所差异的结果。受精后100S,受精塞吸附的精子解体。 相似文献
11.
味觉系统对于食品风味、营养和毒害的"主动认知"对保证哺乳动物生存具有积极意义。哺乳动物具有甜、鲜、苦、咸、酸五类基本味觉。近年来,随着微电子技术及分子生物学等学科的快速发展,人类对味觉系统的研究取得了较大的进展。呈味分子与味觉感受器上的受体结合后,引起味觉细胞去极化和神经递质的释放,神经纤维接收递质并将产生的神经信号传达到脑的味觉感受区,完成味觉识别过程。本文对味觉系统中味觉感受器的组成、味觉受体介导的信号途径以及味觉信息的神经传导过程进行了系统的论述。 相似文献
12.
精卵融合是受精过程中最为重要的步骤。目前公认IZUMO1、JUNO和CD9 (cluster of differentiation antigen 9)为精卵融合的必需蛋白质,其中IZUMO1与JUNO在精卵识别时会形成复合体。有研究表明IZUMO1、JUNO和CD9主要参与精卵融合最初的黏附过程,且它们之间是相互关联发挥作用的。近年来由于X射线晶体学相关技术的发展, IZUMO1-JUNO晶体结构基本被阐明,然而精卵融合的具体分子机制仍未被完全揭示。所以,对哺乳动物精卵融合必需蛋白质IZUMO1-JUNO/CD9的结构、功能和分子机制进行阐述是十分必要的。 相似文献
13.
铁是机体必需微量元素,参与机体合成血红蛋白、肌红蛋白及多种酶的组成和功能发挥,对维持生命和健康至关重要。近四分之一的世界人口遭受铁缺乏或缺铁性贫血的威胁。此外,部分人群还存在铁过载问题,以脏器铁离子蓄积为主要病理改变的遗传性血色病,其在欧美发病率高达1/200,在中国也有报道。血色病后期多诱发肝脏、胰腺及心脏的功能衰退。铁过少或过多对健康都会造成严重危害,机体需要复杂而精密的调控体系维持铁稳态平衡。铁代谢主要包括小肠吸收、肝脏储存、血液转运、巨噬细胞再循环以及周身细胞利用。过去十多年是铁代谢研究的黄金时期,先后发现众多铁稳态代谢相关基因。该文综述了近年来哺乳动物铁代谢领域的研究进展,并对铁稳态代谢中存在的问题进行了初步讨论,为理解和进一步深入研究铁代谢分子机制提供参考。 相似文献
14.
植物抗病机制是目前研究的热点。在长期的进化过程中,植物形成了一系列复杂有效的防御机制来抵御、破坏病原物的侵染。植物抗病基因在植物抗性反应中起着重要的作用,植物一旦监测到病原物马上起始防御反应,并伴随着植物体内一系列细胞和生理生化的变化。近年来,基因沉默作为一个重要的细胞内防御外源核酸的机制,越来越受到科学家重视。综述了植物抗病基因和基因沉默机制在植物抗病反应中的重要作用,并对研究植物抗病机制的前景做了展望。 相似文献
15.
16.
17.
萌发是种子植物进入农业生态系统的重要发育阶段。对于需光类种子,光是调控其萌发最重要的环境信号因子之一,红光促进而远红光抑制种子萌发。光敏色素是调控种子萌发的主要光受体。活化的光敏色素诱导萌发主效抑制因子PIF1发生蛋白降解,调节赤霉素和脱落酸代谢和信号途径相关基因的表达,从而促进种子的萌发。同时,一系列的表观遗传因子通过改变染色质结构,动态调节萌发相关基因的表达从而影响种子的萌发进程。该论文重点论述了光调控种子萌发的转录及表观遗传机制研究进展,并对其在农业生产中的应用进行了展望。 相似文献
18.
卵母细胞的成熟是人类配子发育成熟,进而形成胚胎的必然阶段。目前已知有多种因素调控卵母细胞的成熟。成熟促进因子(MPF)是卵母细胞成熟调控的最重要分子,它通过CDK1亚基的磷酸化及cyclin B累积合成调节卵母细胞的成熟。MAPK/Mos及cAMP均可通过影响MPF的活性从而间接调控卵母细胞成熟。这三者之间又存在相互影响相互作用,形成一个复杂的调控网络。阐明卵母细胞成熟的分子机制有利于为治疗女性不孕症及卵母细胞体外培养成熟提供可靠的理论依据。 相似文献
19.
I型毒素-抗毒素(TA)系统在细菌基因组中广泛存在,在细菌的生长、生存中发挥多种生物学功能,包括抗菌、红细胞毒性、促进持留菌形成、抑制细菌生长或导致细菌休眠等。绝大部分I型毒素蛋白以细胞膜作为靶标,目前已知的一种作用机制是在细胞膜上形成孔洞结构,造成膜电位的下降或细胞膜的破坏,从而抑制ATP的合成或导致细菌死亡;另一种可能的作用机制是毒素蛋白作用在细胞膜上,改变细胞的形状,导致细胞进入休眠状态。I型毒素蛋白-细胞膜作用机制的复杂性和生物功能的多样性远超预期。因此,解析I型毒素蛋白在不同细胞膜中的组装机制及其所形成结构特征就变得非常重要,这也是揭示其结构-功能关系的关键。本文通过综述已报道的I型TA系统的结构特征与生物学功能,结合对其跨膜结构域的预测,探讨了其可能在细胞膜中形成的不同结构及其对功能的影响,分析了影响作用机制的关键因素。这些研究既给耐药细菌的治疗带来机遇,又为新型抗菌药物的研发带来思路。 相似文献