首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.  相似文献   

2.
3.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

4.
伯氏疟原虫氯喹敏感株和抗氯喹株感染的RBC,与0.4mmol/L氯喹一起培养2小时后,敏感和抗氯喹株感染的RBC,对[~3H]次黄嘌呤、[~(14)C]精氨酸和[~3H]甲硫氨酸的摄入量分别被抑制67.3%、41.8%和35.7%以及65.4%、45.6和46.9%。 感染疟原虫的小鼠,经氯喹10mg/kg肌注20小时后,各氨基酸组成,在敏感株疟原虫中普遍的较不服药的对照组上升,而在抗氯喹疟原虫中,升高的氨基酸主要是与多胺、谷胱甘肽有关,如精氨酸、鸟氨酸、甲硫氨酸、脯鼠酸、甘氨酸和半胱氨酸。  相似文献   

5.
ABSTRACT. It is well known that Plasmodium -infected hosts are immunosuppressed, as shown by their depressed immune responsiveness to a variety of antigens. It is not known, however, whether the immune response of malaria-infected animals to the malarial parasite itself is suppressed. The availability of a noninfectious, immunosuppressive factor (ISF) derived from Plasmodium berghei -infected rat erythrocytes made it possible to investigate this question. Mice infected with P. berghei and injected with the ISF had higher levels of parasitemia and shorter survival times than control mice that were similarly infected but were treated with control material derived from noninfected rat erythrocytes or with saline solution. Conversely, mice immunized against the ISF and then infected with P. berghei had lower parasitemias and longer survival times than mice immunized with the control material or with saline solution. We conclude that immunosuppression in murine malaria affects the course of malaria infection.  相似文献   

6.
7.
8.
9.
Enzyme variation in Plasmodium berghei and Plasmodium vinckei   总被引:2,自引:0,他引:2  
R Carter 《Parasitology》1973,66(2):297-307
  相似文献   

10.
Adoptive Transfer of Immunity to Plasmodium berghei   总被引:1,自引:0,他引:1  
SYNOPSIS. Immunity to P. berghei in rats was transferred adoptively with spleen cells but not with bone marrow cells, thymus cells, peripheral lymph node cells or thoracic duct lymphocytes from immune donors. The parasite multiplies at the same rate in control and protected rats but when about 10% of host red cells are infected the number of infected cells in protected rats decreases rapidly whereas control rats attain high parasitemias and die. Serum from immune donors delays the onset of parasitemia but does not affect its ultimate course or the fate of the recipient.  相似文献   

11.
Adoptive transfer of immunity to Plasmodium berghei   总被引:6,自引:0,他引:6  
  相似文献   

12.
13.
Genetic recombination in Plasmodium berghei   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
ABSTRACT. Using fluorogenic substrates and polyacrylamide gels we detected in cell-free extracts of Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei only a single aminopeptidase. A comparative study of the aminopeptidase activity in each extract revealed that the enzymes have similar specificities and kinetics, a near-neutral pH optima of 7.2 and are moderately thermophilic. Each has an apparent molecular weight of 80,000 ± 10,000, determined by high performance liquid chromatography on a calibrated SW500 column. Whilst the P. c. chabaudi and P. berghei activity co-migrate in native polyacrylamide gels, that of P. falciparum migrates more slowly. The three enzymes can be selectively inhibited by ortho -phenanthroline and are thus metallo-aminopeptidases; however, in contrast to other aminopeptidases the metal co-factor does not appear to be Zn2+.  相似文献   

16.
Sporogonic development of Plasmodium berghei berghei is frequently ectopic, occurring deep within the tissue of the midgut with oocysts expelling sporozoites into its lumen. Inocula containing oocysts and sporozoites defecated with blood during the mosquito blood meal produced infections when introduced into mice. The fine structures and pellicle of luminal parasites appeared normal in all respects.  相似文献   

17.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号