首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aneuploid cells are characterized by incomplete chromosome sets. The resulting imbalance in gene dosage has phenotypic consequences that are specific to each karyotype. Even in the case of Down syndrome, the most viable and studied form of human aneuploidy, the mechanisms underlying the connected phenotypes remain mostly unclear. Because of their tolerance to aneuploidy, plants provide a powerful system for a genome-wide investigation of aneuploid syndromes, an approach that is not feasible in animal systems. Indeed, in many plant species, populations of aneuploid individuals can be easily obtained from triploid individuals. We phenotyped a population of Arabidopsis thaliana aneuploid individuals containing 25 different karyotypes. Even in this highly heterogeneous population, we demonstrate that certain traits are strongly associated with the dosage of specific chromosome types and that chromosomal effects can be additive. Further, we identified subtle developmental phenotypes expressed in the diploid progeny of aneuploid parent(s) but not in euploid controls from diploid lineages. These results indicate long-term phenotypic consequences of aneuploidy that can persist after chromosomal balance has been restored. We verified the diploid nature of these individuals by whole-genome sequencing and discuss the possibility that trans-generational phenotypic effects stem from epigenetic modifications passed from aneuploid parents to their diploid progeny.THE genome of aneuploid individuals contains incomplete chromosome sets. The balance between chromosome types, and the genes they encode, is compromised, resulting in altered expression of many genes, including genes with dosage-sensitive effects on phenotypes. In humans, only a few types of aneuploid karyotypes are viable (Hassold and Hunt 2001), highlighting the deleterious effect of chromosome imbalance. The most commonly known viable form of aneuploidy in humans is Down syndrome, which results from a trisomy of chromosome 21 in an otherwise diploid background. Down syndrome patients exhibit many specific phenotypes, sometimes visible only in a subset of patients (Antonarakis et al. 2004). For phenotypes found in all Down syndrome patients, the penetrance of each phenotype varies between patients (Antonarakis et al. 2004). Despite the increasing amount of information available about the human genome and the availability of a mouse model for Down syndrome (O''Doherty et al. 2005), the genes responsible for most of the phenotypes associated with Down syndrome are still unknown (Patterson 2007; Korbel et al. 2009; Patterson 2009). Recently, detailed phenotypic analyses of as many as 30 aneuploid patients have allowed the identification of susceptibility regions for several specific phenotypes (Patterson 2007, 2009; Korbel et al. 2009; Lyle et al. 2009), but the specific genes remain to be identified. Understanding the physiology of aneuploidy is not only relevant to those individuals with aneuploid genomes but also to understanding cancer since most cancerous cells are aneuploid (Matzke et al. 2003; Pihan and Doxsey 2003; Storchova and Pellman 2004; Holland and Cleveland 2009; Williams and Amon 2009) or the consequences of copy number variation and dosage sensitivity (Dear 2009; Henrichsen et al. 2009).Plants are more tolerant of aneuploidy than animals (Matzke et al. 2003) for reasons that remain unclear. Since the discovery of the Datura trisomic “chromosome mutants” by Blakeslee (1921, 1922), viable trisomics of each chromosome type have been described in numerous species. Trisomics exhibit phenotypes specific to the identity of the triplicated chromosome (Blakeslee 1922; Khush 1973; Koornneef and Van der Veen 1983; Singh 2003). More complex aneuploids, i.e., individuals carrying more than one additional chromosome, can be viable as well and have been observed in many plants species, especially among the progeny of triploid individuals (McClintock 1929; Levan 1942; Johnsson 1945; Khush 1973). Some species appear to be more tolerant of complex aneuploidies than others, suggesting a genetic basis for aneuploidy tolerance (Satina and Blakeslee 1938; Khush 1973; Ramsey and Schemske 2002; Henry et al. 2009). Aneuploid individuals frequently appear spontaneously within polyploid plant populations, presumably due to a failure to equally partition the multiple chromosome sets at meiosis (Randolph 1935; Doyle 1986). These aneuploids exhibit few or subtle phenotypic abnormalities and can often compete with their euploid progenitors (Ramsey and Schemske 1998). Plants therefore provide an excellent opportunity for a genome-wide investigation of aneuploid syndromes: sample size is not limited, phenotypes can be described and assessed in detail, and plant aneuploid populations provide a complex mixture of viable karyotypes.In this article, we report our investigation of the relationship between phenotype and karyotype in populations of aneuploid Arabidopsis thaliana plants. All simple trisomics of A. thaliana have been previously isolated and phenotypically characterized (Steinitz-Sears 1962; Lee-Chen and Steinitz-Sears 1967; Steinitz-Sears and Lee-Chen 1970; Koornneef and Van der Veen 1983), demonstrating that they are tolerated in A. thaliana. We previously reported that aneuploid swarms—populations of aneuploid individuals of varying aneuploid karyotypes—could be obtained from the progeny of triploid A. thaliana individuals (Henry et al. 2005, 2009). Using a combination of a quantitative PCR-based method and flow cytometry, we were able to derive the full aneuploid karyotype of each of these individuals (Henry et al. 2006). We further crossed triploid A. thaliana to diploid or tetraploid individuals and demonstrated that at least 44 of the 60 possible aneuploid karyotypes that could result from these crosses (aneuploid individuals carrying between 11 and 19 chromosomes) were viable and successfully produced adult plants. Taken together, these populations and methods make it possible to explore the basis of aneuploid syndromes in A. thaliana. In this study, we were able to phenotypically characterize at least one individual from 25 different aneuploid karyotypes falling between diploidy and tetraploidy. We demonstrated that specific phenotypes are affected by the dosage of specific chromosome types. The effect of the dosage of specific chromosome types on traits was additive and could be used to predict the observed phenotype. The availability of multiple generations of aneuploid and euploid individuals allowed us to investigate potential long-term effects of aneuploidy as well as parent-of-origin effects on aneuploid phenotypes.  相似文献   

2.
Fitness is a parameter that quantitatively measures adaptation of a virus to a given environment. We have previously reported exponential fitness gains of large populations of vesicular stomatitis virus replicating in a constant environment (I. S. Novella et al., Proc. Natl. Acad. Sci. USA 92:5841–5844, 1995). In this paper, we report that during long-term passage of such large viral populations, fitness values reached a high-fitness plateau during which stochastic fitness variations were observed. This effect appears likely to be due to bottleneck effects on very high fitness populations.  相似文献   

3.
不同启动子驱动下acdS基因转化烟草及耐盐性研究   总被引:2,自引:0,他引:2  
acdS基因编码产生ACC脱氨酶,该酶属于脱巯基家族,可以降低逆境乙烯的合成量。利用农杆菌介导的叶盘法将CaMV35S-2启动子和rolD启动子驱动下的acdS基因转入烟草NC89叶片中。在含有卡那霉素的MS培养基上筛选得到Kanr转化烟草。通过PCR、Southern blotting对得到的Kanr转基因烟草进行分析,结果表明,acdS基因已经整合到了烟草的基因组中。对转基因烟草的RT-PCR及cDNA进行测序分析表明,acdS基因能够正确转录。对转基因烟草进行耐盐性测定,结果显示,与对照相比,两种启动子驱动下的转基因烟草耐盐性均有增强。但是rolD启动子驱动下的转基因植株的耐盐性最强。  相似文献   

4.
Sylvain Glémin 《Genetics》2010,185(3):939-959
GC-biased gene conversion (gBGC) is a recombination-associated process mimicking selection in favor of G and C alleles. It is increasingly recognized as a widespread force in shaping the genomic nucleotide landscape. In recombination hotspots, gBGC can lead to bursts of fixation of GC nucleotides and to accelerated nucleotide substitution rates. It was recently shown that these episodes of strong gBGC could give spurious signatures of adaptation and/or relaxed selection. There is also evidence that gBGC could drive the fixation of deleterious amino acid mutations in some primate genes. This raises the question of the potential fitness effects of gBGC. While gBGC has been metaphorically termed the “Achilles'' heel” of our genome, we do not know whether interference between gBGC and selection merely has practical consequences for the analysis of sequence data or whether it has broader fundamental implications for individuals and populations. I developed a population genetics model to predict the consequences of gBGC on the mutation load and inbreeding depression. I also used estimates available for humans to quantitatively evaluate the fitness impact of gBGC. Surprising features emerged from this model: (i) Contrary to classical mutation load models, gBGC generates a fixation load independent of population size and could contribute to a significant part of the load; (ii) gBGC can maintain recessive deleterious mutations for a long time at intermediate frequency, in a similar way to overdominance, and these mutations generate high inbreeding depression, even if they are slightly deleterious; (iii) since mating systems affect both the selection efficacy and gBGC intensity, gBGC challenges classical predictions concerning the interaction between mating systems and deleterious mutations, and gBGC could constitute an additional cost of outcrossing; and (iv) if mutations are biased toward A and T alleles, very low gBGC levels can reduce the load. A robust prediction is that the gBGC level minimizing the load depends only on the mutational bias and population size. These surprising results suggest that gBGC may have nonnegligible fitness consequences and could play a significant role in the evolution of genetic systems. They also shed light on the evolution of gBGC itself.GC-BIASED gene conversion (gBGC) is increasingly recognized as a widespread force in shaping genome evolution. In different species, gene conversion occurring during double-strand break recombination repair is thought to be biased toward G and C alleles. In heterozygotes, GC alleles undergo a kind of molecular meiotic drive that mimics selection (reviewed in Marais 2003). This process can rapidly increase the GC content, especially around recombination hotspots (Spencer et al. 2006), and, more broadly, can affect genome-wide nucleotide landscapes (Duret and Galtier 2009a). For instance, it is thought to play a role in shaping isochore structure evolution in mammals (Galtier et al. 2001; Meunier and Duret 2004; Duret et al. 2006) and birds (Webster et al. 2006). Direct experimental evidence of gBGC mainly comes from studies in yeast (Birdsell 2002; Mancera et al. 2008; but see Marsolier-Kergoat and Yeramian 2009) and humans (Brown and Jiricny 1987). However, associations between recombination and the nucleotide landscape and frequency spectra biased toward GC alleles provide indirect evidence in very diverse organisms (
OrganismsDirect evidenceIndirect evidenceAchille''s heel evidenceReferences
YeastMeiotic segregation biasMancera et al. (2008)
Mitotic and mitotic heteromismatch correction biasCorrelation between GC and recombinationBirdsell (2002)
MammalsMitotic heteromismatch correction biasBrown and Jiricny (1987)
Correlation between GC*/GC and recombinationDuret and Arndt (2008); Meunier and Duret (2004)
Biased frequency spectrum toward GC allelesGaltier et al. (2001); Spencer et al. (2006)
GC bias associated with high dN/dS near recombination hotspotBerglund et al. (2009; Galtier et al. (2009)
BirdsCorrelation between GC and recombinationInternational Chicken Genome Sequencing Consortium (2004)
TurtlesCorrelation between GC and chromosome sizeKuraku et al. (2006)
DrosophilaCorrelation between GC and recombinationMarais et al. (2003)
Biased frequency spectrum toward GC allelesGaltier et al. (2006)
NematodesCorrelation between GC and recombinationMarais et al. (2001)
GrassesCorrelation between GC and outcrossing/selfingGlémin et al. (2006)
Correlation between GC* and recombination and outcrossing/selfingOutcrossing increases dN/dS for genes with high GC*Haudry et al. (2008)
Green algaeCorrelation between GC and recombinationJancek et al. (2008)
ParameciumCorrelation between GC and chromosome sizeDuret et al. (2008)
Open in a separate windowThe impact of gBGC on noncoding sequences and synonymous sites has been studied in depth, especially because of confounding effects with selection on codon usage (Marais et al. 2001). More recently, Galtier and Duret (2007) pointed out that gBGC may also interfere with selection when affecting functional sequences. They argued that gBGC could leave spurious signatures of adaptive selection and proposed to extend the null hypothesis of molecular evolution. Indeed, gBGC can lead to a ratio of nonsynonymous (dN) over synonymous (dS) substitutions above one (Berglund et al. 2009; Galtier et al. 2009), i.e., a typical signature of positive selection (Nielsen 2005). This hypothesis has been widely debated for human-accelerated regions (HARs). These regions are extremely conserved across mammals but show evidence of accelerated evolution along the human lineage, which has been interpreted as evidence of positive selection (Pollard et al. 2006a,b; Prabhakar et al. 2006, 2008). On the contrary, other authors argued that patterns observed in HARs, such as the AT → GC substitution bias, the absence of a selective sweep signature, or the propensity to occur within or close to recombination hotspots, are more likely explained by gBGC rather than positive selection (Galtier and Duret 2007; Berglund et al. 2009; Duret and Galtier 2009b; but see also Pollard et al. 2006a who also suggested that gBGC might play a role in HARs evolution). It is thus crucial to take gBGC into account when interpreting genomic data.Moreover, Galtier and Duret (2007) initially suggested that gBGC hotspots could contribute to the fixation of slightly deleterious AT → GC mutations and could represent the Achilles'' heel of our genome. This hypothesis was reinforced later in primates, with evidence of gBGC-driven fixation of deleterious mutations in proteins (Galtier et al. 2009). A similar result was also found in some grass species, whose genomes are also supposed to be affected by gBGC (Glémin et al. 2006). Haudry et al. (2008) compared two outcrossing and two selfing grass species and showed that GC-biased genes exhibit higher dN/dS ratio in outcrossing than in selfing lineages. The reverse pattern would be expected under pure selective models because of the reduced selection efficacy in selfers (Charlesworth 1992; Glémin 2007). This pattern is in agreement with a genomic Achilles'' heel associated with outcrossing, while gBGC is inefficient in selfing species because they are mainly homozygous.Twenty years ago, Bengtsson (1990) already pointed out that biased conversion can generally affect the mutation load. The mutation load is the reduction in the mean fitness of a population due to mutation accumulation, which could lead to population extinction if it is too high (Lynch et al. 1995). At this time, Bengtsson concluded that “it is impossible to know if biased conversion plays a major role in determining the magnitude of the mutation load in organisms such as ourselves, but the possibility must be considered and further investigated (Bengtsson 1990, p. 186).” Now, one can propose gBGC could be such a widespread biased conversion process. It thus appears timely to thoroughly investigate the fitness consequences of gBGC through its potential effects on the dynamics of deleterious mutations. The fitness consequences of gBGC were also pointed out as a major future issue to be addressed by Duret and Galtier (2009a). In addition to the load, deleterious mutations have many other evolutionary consequences (for review see Charlesworth and Charlesworth 1998). They are thought to be the main determinant of inbreeding depression, i.e., the reduction in fitness of inbred individuals compared to outbred ones. They also play a key role in the evolution of genetic systems (sexual reproduction and recombination, inbreeding avoidance mechanisms, ploidy cycles), of senescence, or in the degeneration of nonrecombining regions, such as Y chromosomes. So far, we know little, if anything, about how gBGC might affect these processes.In his seminal work, Bengtsson (1990) did not address several important points. First, he did not include genetic drift in his model. Nearly neutral mutations, for which drift and selection are of similar intensities, are the most damaging ones because they can drift to fixation, unlike strongly deleterious mutations that are maintained at low frequency (Crow 1993; Lande 1994, 1998). While gBGC intensities are rather weak (Birdsell 2002; Spencer et al. 2006), they could markedly affect the fate of nearly neutral mutations (see also Galtier et al. 2009). Second, Bengtsson did not study the effect of gene conversion on inbreeding depression, while he showed that recessive mutations, mostly involved in inbreeding depression, are the most affected by gene conversion. Third, he did not envisage systematic GC bias with its opposite effects on A/T and G/C deleterious alleles. Fourth, while he noted that selfing affects both the efficacy of selection and that of conversion, he did not fully investigate the effect of mating systems. On one hand, selfing is efficient in purging strongly deleterious mutations causing inbreeding depression. However, since selfing is expected to increase drift, weakly deleterious mutations can fix in selfing species, contributing to the so-called “drift load” (Charlesworth 1992; Glémin 2007). Self-fertilizing populations are thus expected to exhibit low inbreeding depression and high drift load. On the other hand, gBGC, and thus its cost, vanishes as the selfing rate and homozygosity increase (Marais et al. 2004). gBGC could thus challenge classical views on mating systems and it was even speculated that gBGC could affect their evolution (Haudry et al. 2008).Here I present a population genetics model that includes mutation, selection, drift, and gBGC, which extends previous studies (Gutz and Leslie 1976; Lamb and Helmi 1982; Nagylaki 1983a,b; Bengtsson 1990). I specifically examine how gBGC can affect inbreeding depression and the mutation load. I also focus on the effect of mating system, which is especially interesting with regard to the interaction between biased conversion and selection. Finally, I discuss how these results could give insight into how gBGC evolved.

Impacts of gBGC on inbreeding depression:

Inbreeding depression is defined as the reduction in fitness of selfed (and more generally inbred) individuals compared to outcrossed individuals,(15)where and are the mean fitness of outcrosses and selfcrosses, respectively (Charlesworth and Charlesworth 1987; Charlesworth and Willis 2009). The approximation is very good in most conditions, because under weak (s ≪ 1) and strong selection (x ≪ 1) (see Glémin et al. 2003). Similar to the load, considering both sites for which either S or W alleles are deleterious, in proportion q and 1 – q, respectively, we get(16)
gBGC and the genetic basis of inbreeding depression in panmictic populations:
In infinite panmictic populations without gBGC, inbreeding depression depends only on mutation rates and dominance levels. Partially recessive mutations () contribute only to inbreeding depression, and the more recessive they are, the higher the inbreeding depression (Charlesworth and Charlesworth 1987). In finite populations, deterministic results hold for strongly deleterious mutations (s ≫ 1/Ne), which contribute mostly to inbreeding depression. Contrary to the load, weakly deleterious mutations (∼s ≤ 1/Ne) contribute little to inbreeding depression (Figure 4, a and c, and see Bataillon and Kirkpatrick 2000).Open in a separate windowFigure 4.—Inbreeding depression (×106) as a function of s without (a and c) or with (b and d) gBGC (b = 0.0002). (a and b) h = 0.2: thick lines, N = 5000; thin lines, N = 10,000; dashed lines, N = 50,000; dotted lines, N = 100,000. (c and d) N = 10,000: thick lines, h = 0.4; thin lines, h = 0.2; dashed lines, h = 0.1; dotted lines, h = 0.05. u = 10−6, λ = 2.Like the load, gBGC affects both the magnitude and the structure of inbreeding depression. In infinite populations, and more generally for strongly deleterious alleles (Nes ≫ 1), replacing x by xeq given by Equations 4 in Equations 15 and 16 leads to(17a)(17b)(17c)The effect of gBGC on inbreeding depression is not monotonic. Like the load, gBGC increases inbreeding depression if b > hs(1 − 2q/(q + λ − qλ)). However, contrary to the load, a strong gBGC decreases inbreeding depression, which tends to 0 as b increases, while the load tends to qs (Equation 10c). An analysis of Equation 17b shows that mutations that maximize inbreeding depression are those that also maximize the load, i.e., S deleterious mutations with s ≈ 2b.In finite populations, inbreeding depression must be integrated over the Φ distribution, which leads to(18)(see also Glémin et al. 2003). While it is not possible to get an analytical expression of (18), numerical computations (see appendix b) show that S deleterious mutations with s ≈ 2b also maximize inbreeding depression in finite populations (Figure 4). More broadly, inbreeding depression is maximal under the overdominant-like selection regime (gray area in Figure 2). Once again, even low to moderate gBGC markedly affects the genetic structure of inbreeding depression. First, mutations of intermediate effects contribute the most to inbreeding depression, i.e., up to one order of magnitude higher than strongly deleterious mutations (compare Figure 4a with 4b). Second, even nearly additive mutations can have a substantial effect (compare Figure 4c with 4d).Since little is known about the distribution of dominance coefficients, especially the dominance of mildly deleterious mutations (of the order of b), it is difficult to quantitatively predict the full impact of gBGC on inbreeding depression. We can conclude that, on average, gBGC should increase inbreeding depression. However, further insight into mutational parameters is crucial to assess the quantitative impact of gBGC.

Joint effect of gBGC and mating system on the load and inbreeding depression:

Selfing, or more generally inbreeding, slightly reduces the segregating load through the purging of recessive mutations (Ohta and Cockerham 1974), but can substantially increase the fixation load because of the effective population size reduction under inbreeding: (see above and Pollak 1987; Nordborg 1997; Glémin 2007). In numerical examples, I assumed that α decreases with F according to the background selection model (Charlesworth et al. 1993; Nordborg et al. 1996), as in Glémin (2007). With gBGC, selfing thus has two opposite effects on the fixation load. Selfing increases the drift load sensu stricto but decreases the fixation load due to gBGC. A surprising consequence is that the load can be higher in outcrossing than in selfing populations (Figure 5). Quantitatively this is also expected, even with a gBGC hotspot affecting just 3% of the genome (Figure 5 and Open in a separate windowFigure 5.—Effective population size (a and b) and the load (×106) (c–f) as a function of F for different gBGC intensities (thick lines, b = 0; thin lines, b = 0.0001; dashed lines, b = 0.0002; dotted lines, b = 0.0005). The effective population size depends on F under the background selection (BS) model (Charlesworth et al. 1993), using Equations 16 and 17 in Glémin (2007): , where U is the genomic deleterious mutation rate, R is the genomic recombination rate, sd is the mean selection coefficient against strongly deleterious mutations, and hd is their dominance coefficient. N = 10,000, U = 0.2, hd = 0.1, and sd = 0.05. (a, c, and e) R = 5, “weak” BS; (b, d, and f) R = 0.5, “strong” BS. (c and d) Load averaged over half GC and half AT deleterious alleles, with a bias in favor of AT alleles. (e and f) Load averaged over 10% of GC deleterious alleles and 90% of AT deleterious alleles with a bias in favor of AT alleles; see Figure 3. h = 0.5, u = 10−6, and λ = 2.Generally, the effect of selfing is simpler for inbreeding depression. Purging, Ne reduction, and suppression of gBGC contribute to decreasing inbreeding depression in selfing populations (Figure 6a). However, there are special cases in which maximum inbreeding depression is reached for intermediate selfing rates (Figure 6b). In such cases, in outcrossing populations, gBGC is strong enough to sweep polymorphism out and reduce inbreeding depression (b > s, regime 1 in Figure 2). As the selfing rate increases, gBGC declines, and the selection dynamics become overdominant-like (regime 2, Figure 2), thus maximizing inbreeding depression. For high selfing rates, gBGC vanishes (regime 3 in Figure 2) and deleterious alleles are either purged or fixed if there is substantial drift. This is similar to the effect of selfing on inbreeding depression caused by asymmetrical overdominance, where inbreeding depression also peaks for intermediate selfing rates (Ziehe and Roberds 1989; Charlesworth and Charlesworth 1990). In the present case, the range of parameters leading to this peculiar behavior is narrow because the overdominant-like region depends on the selfing rates and can vanish either for low or for high selfing rates (Figure 2).Open in a separate windowFigure 6.—Inbreeding depression (×106) as a function of F for different gBGC intensities (thick lines, b = 0; thin lines, b = 0.0001; dashed lines, b = 0.0002; dotted lines, b = 0.0005). Inbreeding depression is averaged over half GC and half AT deleterious alleles. The effective population size depends on F as in Figure 5 (same parameters). (a) s = 0.002; (b) s = 0.0005; (c) s = 0.0002. h = 0.2, u = 10−6, and λ = 2.

Minimum load and the evolution of gBGC and recombination landscapes:

Although gBGC may have deleterious fitness consequences, it is surprising that it evolved in many taxa (Duret and Galtier 2009a). Birdsell (2002) initially suggested that gBGC may have evolved as a response to mutational bias toward AT (λ > 1, here). Indeed, I show that a minimum load is reached for weak gBGC (b ≈ ln(λ)/4N, Equation 14). This result is very general whatever the distribution of fitness effects of mutations (appendix d). However, the range of optimal gBGC is narrow, and gBGC increases the load as far as b > ln(λ)/2N (appendix c). In humans, using N = 10,000 and λ = 2, gBGC levels that minimize the load are ∼1.17 × 10−5, i.e., one order of magnitude lower than the average bias observed in recombination hotspots (Myers et al. 2005). However, selection on conversion modifiers will not necessarily minimize the load because of gametic disequilibrium generated between modifiers and fitness loci (Bengtsson and Uyenoyama 1990). Selection for limitation of somatic AT-biased mutations could also have selected for GC-biased mismatch repair machinery (Brown and Jiricny 1987). If the bias level that would be selected for somatic reasons is >ln(λ)/2N, a side effect would be the generation of a substantial load at the population level. Finally, it is interesting to note that when synonymous codon positions are under selection for translation accuracy, optimal gBGC levels can be higher than gBGC levels that minimize the protein load, especially when most optimal codons end in G or C ().Conversely, gBGC could also affect the evolution of recombination landscapes, which could evolve to reduce the gBGC load. Surprisingly, for a given recombination/conversion level, the hotspot distribution does not appear to be optimal (Nishant and Rao 2005), one can speculate that the hotspot localization outside genes could be a response to avoid the deleterious effects of gBGC.Up to now, these verbal arguments have not been assessed theoretically (but see Bengtsson and Uyenoyama 1990 for a different kind of conversion bias). Population genetics models are necessary to test these hypotheses concerning the evolution of gBGC and recombination landscapes and to pinpoint the key parameters that might govern their evolution.

gBGC and the evolution of mating systems:

Deleterious mutations also play a crucial role in the evolution of mating systems. They are the main source of inbreeding depression, which balances the automatic advantage of selfing. The drift load is also thought to contribute to the extinction of selfing species. Since they are mainly homozygous, selfing species are mostly free from gBGC and its deleterious impacts. I discuss below how this might affect the evolution of mating systems.
Inbreeding depression and the shift in mating systems:
Inbreeding depression plays a key role in the evolution of mating systems (Charlesworth and Charlesworth 1987; Charlesworth 2006b). Since it balances the automatic advantage of selfing, high inbreeding depression favors outcrossing, while selfing can evolve when it is low. Moreover, selfing helps to purge strongly deleterious mutations, thus decreasing inbreeding depression. This positive feedback reinforces the disruptive selection on the selfing rate and prevents the transition from selfing to outcrossing (Lande and Schemske 1985).Theoretical results suggest that, in most conditions, gBGC would reinforce inbreeding depression in outcrossing populations (Figure 6), which would prevent the evolution of selfing. In reverse, if selfing is initially selected for, recurrent selfing would reduce the load through both purging and avoidance of gBGC. Under this scenario, gBGC would reinforce disruptive selection on mating systems. However, under some conditions (see Figure 6), inbreeding depression peaks at intermediate selfing rates, as observed for asymmetrical overdominance (Ziehe and Roberds 1989; Charlesworth and Charlesworth 1990). In theory, this could prevent the shift toward complete selfing and maintain stable mixed mating systems (Charlesworth and Charlesworth 1990; Uyenoyama and Waller 1991). However, this pattern is observed under restrictive conditions and it is very unlikely on the whole-genome scale. Dominance patterns are crucial for predicting inbreeding depression, especially with gBGC. Contrary to the load, it is thus difficult to evaluate the quantitative impact of gBGC on inbreeding depression. However, increased inbreeding depression in outcrossing species subject to gBGC seems to be the most likely scenario.
gBGC and the long-term evolution of mating systems:
In the long term, the gBGC-induced load also challenges the “dead-end hypothesis,” which posits that, because of the reduction of selection efficacy, self-fertilizing species would accumulate weakly deleterious mutations in the long term, eventually leading to extinction (Takebayashi and Morrell 2001). Because of gBGC, not drift, outcrossing species could also accumulate a load of weakly deleterious mutations (Figure 7), and they could suffer from a higher load than highly self-fertilizing species (Haudry et al. (2008) found that in two outcrossing grass species, but not in two self-fertilizing ones, the dN/dS ratio is significantly higher for genes exhibiting GC enrichment. They speculated that substitutions in these genes might contribute to increasing the load in these two outcrossing grass species. Such results are still very sparse. In plants, evidence of strong gBGC is mainly restricted to grasses (but see Wright et al. 2007). It will be necessary to conduct more in-depth studies to assess the phylogenetic distribution of gBGC in plants and other hermaphrodite organisms and to further test the genomic Achilles'' heel hypothesis in relation to mating systems. While theoretically possible, the quantitative effect of gBGC on the evolution of mating systems remains a new, open, and challenging question.

Conclusion:

I showed that the interaction between gBGC and selection might have surprising qualitative consequences on load and inbreeding depression patterns. Given the few quantitative data available on gBGC levels and selection intensities (mainly in humans), it turns out that even weak genome-wide gBGC can have significant fitness impacts. gBGC should be taken into account not only for sequence analyses (Berglund et al. 2009; Galtier et al. 2009), but also for its potential fitness consequences, for instance concerning genetic diseases. Interferences between gBGC and selection also give rise to new questions on the evolution of mating systems. However, most of the challenging conclusions given here have yet to be quantitatively evaluated. Quantification of gBGC and its interaction with selection in various organisms will be crucial in the future.  相似文献   

5.
Gene Mutations and Aneuploidy: The Instability That Causes Cancer     
《Cell cycle (Georgetown, Tex.)》2013,12(9):1099-1101
Cancer cells have been characterized with activated mutant oncogenes and inactivated or deleted tumor suppressor genes. Cancer cells are also aneuploid, displaying a jumble of chromosomal anomalies including gain or loss of whole chromosomes or transposed chromosomal fragments. Whether mutation of specific genes or aneuploidy is more critical for tumorigenesis is very much a contentious issue. We recently showed that activated oncogenes induce oxidative damage that is exacerbated by conventional cell culture conditions. This “culture shock” or a loss of p53 function creates a precarious environment that permits oncogenes to induce rapid chromosomal instability and transformation. We found that mutant genes and aneuploidy were prerequisites and collaborators for neoplastic transformation.  相似文献   

6.
Chromatin Regulation and Gene Centrality Are Essential for Controlling Fitness Pleiotropy in Yeast     
Linqi Zhou  Xiaotu Ma  Michelle N. Arbeitman  Fengzhu Sun 《PloS one》2009,4(11)
  相似文献   

7.
Fitness Consequences of Maternal Effects in Streblospio benedicti (Annelida: Polychaeta)     
BRIDGES  TODD S.; HEPPELL  SELINA 《Integrative and comparative biology》1996,36(2):132-146
SYNOPSIS. The degree to which a female partitions resourcesbetween fecundity and per offspring investment is a centralquestion in life-history theory. Maternal effects may influencethe nature of this tradeoff through their effect on per offspringinvestment and subsequent offspring fitness. The purpose ofthis study was to determine the effect of female age and sizeon brood size (number of offspring), per offspring investment,and fitness in the polychaete Streblospio benedicti. Early stageembryos were collected from brooding females of known age andsize over a period of 100 days; these embryos were counted andanalyzed for their C and N content. Female size had a positiveeffect on brood size; larger females produced larger broods.However, brood size decreased with female age (females did notincrease in size after reaching sexual maturity). Brood sizedeclined 20–46% between 60 and 160 days of age. Duringthis same age period per offspring investment, measured in termsof C and N, increased by 25%. Offspring survivorship and sizeat two weeks post-release from the female were used as measuresof offspring fitness. Offspring survivorship increased 28% between60 and 160 days of age. Increased growth in offspring from olderfemales resulted in a 23% increase in offspring size at twoweeks. Including the maternal age effect in two population modelsfor S. benedicti increased population growth rate (). Populationgrowth was increased to a greater degree when the maternal effectwas modeled by enhancing offspring survival compared to whenfecundity was increased by the same proportional amount. Thissuggests that the maternal effect may be adaptive, particularlywhen conditions for offspring survival and growth are poor.  相似文献   

8.
The ‘Evo-Demo’ Implications of Condition-Dependent Mortality     
Victor Ronget  Michael Garratt  Jean-François Lemaître  Jean-Michel Gaillard 《Trends in ecology & evolution》2017,32(12):909-921
  相似文献   

9.
The Fitness Effects of Love     
Roland G. Roberts 《PLoS biology》2015,13(9)
  相似文献   

10.
Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance     
Anna M. Selmecki  Keely Dulmage  Leah E. Cowen  James B. Anderson  Judith Berman 《PLoS genetics》2009,5(10)
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole.  相似文献   

11.
Elevated Tolerance to Aneuploidy in Cancer Cells: Estimating the Fitness Effects of Chromosome Number Alterations by In Silico Modelling of Somatic Genome Evolution     
Anders Valind  Yuesheng Jin  David Gisselsson 《PloS one》2013,8(7)
An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.  相似文献   

12.
The Condition-Dependent Transcriptional Landscape of Burkholderia pseudomallei     
Wen Fong Ooi  Catherine Ong  Tannistha Nandi  Jason F. Kreisberg  Hui Hoon Chua  Guangwen Sun  Yahua Chen  Claudia Mueller  Laura Conejero  Majid Eshaghi  Roy Moh Lik Ang  Jianhua Liu  Bruno W. Sobral  Sunee Korbsrisate  Yunn Hwen Gan  Richard W. Titball  Gregory J. Bancroft  Eric Valade  Patrick Tan 《PLoS genetics》2013,9(9)
  相似文献   

13.
Fitness Consequences of Timing of Migration and Breeding in Cormorants     
Phillip Gienapp  Thomas Bregnballe 《PloS one》2012,7(9)
In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.  相似文献   

14.
Vector-Dependent Gene Expression Driven by Insulated P-Element Reporter Vectors     
《Fly》2013,7(1):55-56
The Pelican and Stinger series of P-element transformation vectors are a popular choice for reporter gene expression in transgenic flies. We report here as a cautionary note that these vectors on their own can drive reporter gene expression in the larval and pupal salivary gland.  相似文献   

15.
Genomic and Fitness Consequences of Genetic Rescue in Wild Populations     
《Current biology : CB》2020,30(3):517-522.e5
  相似文献   

16.
A Mechanism of Gene Amplification Driven by Small DNA Fragments     
Kuntal Mukherjee  Francesca Storici 《PLoS genetics》2012,8(12)
DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature.  相似文献   

17.
The Epigenetic Origin of Aneuploidy     
Luis A Herrera  Diddier Prada  Marco A Andonegui    Alfonso Dueas-Gonzlez 《Current Genomics》2008,9(1):43-50
  相似文献   

18.
The Evolutionarily Stable Distribution of Fitness Effects     
Daniel P. Rice  Benjamin H. Good  Michael M. Desai 《Genetics》2015,200(1):321-329
The distribution of fitness effects (DFE) of new mutations is a key parameter in determining the course of evolution. This fact has motivated extensive efforts to measure the DFE or to predict it from first principles. However, just as the DFE determines the course of evolution, the evolutionary process itself constrains the DFE. Here, we analyze a simple model of genome evolution in a constant environment in which natural selection drives the population toward a dynamic steady state where beneficial and deleterious substitutions balance. The distribution of fitness effects at this steady state is stable under further evolution and provides a natural null expectation for the DFE in a population that has evolved in a constant environment for a long time. We calculate how the shape of the evolutionarily stable DFE depends on the underlying population genetic parameters. We show that, in the absence of epistasis, the ratio of beneficial to deleterious mutations of a given fitness effect obeys a simple relationship independent of population genetic details. Finally, we analyze how the stable DFE changes in the presence of a simple form of diminishing-returns epistasis.  相似文献   

19.
Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System     
Silvia Caballero Ortiz  Monika Trienens  Marko Rohlfs 《PloS one》2013,8(8)

Background

Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi.

Methodology/Principal Findings

Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding.

Conclusions/Significance

Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.  相似文献   

20.
The Sinorhizobium meliloti SyrM Regulon: Effects on Global Gene Expression Are Mediated by syrA and nodD3     
Melanie J. Barnett  Sharon R. Long 《Journal of bacteriology》2015,197(10):1792-1806
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号