首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates.  相似文献   

2.
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis.  相似文献   

3.
Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human--dog and cat--dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig--human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.  相似文献   

4.
Microdissected arm specific paints (ASPs) for human (HSA) chromosomes (Chrs) 2, 5, 6, 16, and 19 were used as probes on pig (SSC) and horse (ECA) metaphase chromosomes. Regions homologous to individual human arms were delineated in the two species studied. Of the ten ASPs used, HSA6 and 16 ASPs showed complete synteny conservation of individual arms as single blocks/arms both in pig and horse. A similar trend was, in general, also observed for HSA19 ASPs. However, contrary to these observations, synteny conservation of individual arms of HSA2 and HSA5 was not observed in pig and horse. The arm specific painting data, coupled with the available gene mapping data, showed that, although HSA2 corresponded to two arms/chromosomes each in pig and horse, the breakpoint of this synteny in humans was not located at the centromere, but at HSA2q13 band. Similarly, arm specific paints for HSA5 showed that of the two blocks/chromosomes painted in pig and horse, one corresponded to HSA5q13-pter, the other to HSA5q13-qter. The findings suggest that 5q13 band may also be an evolutionary break point, similar to the one detected on HSA2q13. The microdissected human arm specific painting probes used in the present work provide more accurate and refined comparative information on pig and horse chromosomes than that available through the use of human whole chromosome specific paints. Received: 1 June 1997 / Accepted: 5 September 1997  相似文献   

5.
Human and sheep chromosome-specific probes were used to construct comparative painting maps between the pig (Suiformes), cattle and sheep (Bovidae), and humans. Various yet unknown translocations were observed that would assist in a more complete reconstruction of homology maps of these species. The number of homologous segments that can be identified with sheep probes in the pig karyotype exceeds that described previously by chromosome painting between two non-primate mammals belonging to the same order. Sheep probes painted 62 segments on pig autosomes and delineated not only translocations, but also 9 inversions. All inversions were paracentric and indicate that these rearrangements may be characteristic for chromosomal changes in suiforms. Hybridizations of all sheep painting probes to cattle chromosomes confirmed the chromosome conservation in bovids. In addition, we observed a small translocation that was previously postulated from linkage mapping data, but was not yet described by physical mapping. The chromosome painting data are complemented with a map of available comparative gene mapping data between pig and sheep genomes. A detailed table listing the comparative gene mapping data between pig and cattle genomes is provided. The reanalysis of the pig karyotype with a new generation of human paint probes provides an update of the human/pig comparative genome map and demonstrates two new chromosome homologies. Seven conserved segments not yet identified by chromosome painting are also reported. Received: 2 October 2000 / Accepted: 15 January 2001  相似文献   

6.
We integrated chromosome painting information on 5 core-insectivora species available in the literature with new Zoo-FISH data for Iberian shrew (Sorex granarius) and Altai mole (Talpa altaica). Our analysis of these 7 species allowed us to determine the chromosomal features of Eulipotyphla genomes and to update the previously proposed ancestral karyotype for 2 main groups of the Sorex genus. The chromosome painting evidence with human painting probes (HSA) reveals the presence of the 2 unique associations HSA4/5 and 1/10p/12/22b, which support Eulipotyphla. There are a series of synapomorphies both for Erinaceidae (HSA3/1/5, 3/17, 11/15 and 10/20) and for Soricinae (HSA5/9, 6/7/16, 8/3/21 and 11/12/22). We found associations that link Talpidae/Erinaceidae (HSA7/8, 1/5 and 1/19p), Talpidae/Soricidae (HSA1/8/4) and Erinaceidae/Soricidae (HSA4/20 and 2/13). Genome conservation in Eulipotyphla was estimated on the basis of the number of evolutionary breaks in the ancestral mammalian chromosomes. In total, 7 chromosomes of the boreo-eutherian ancestor (BEA8 or 10, 9, 17, 18, 20-22) were retained in all eulipotyphlans studied; among them moles show the highest level of chromosome conservation. The integration of sequence data into the chromosome painting information allowed us to further examine the chromosomal syntenies within a phylogenetic perspective. Based on our analysis we offer the most parsimonious reconstruction of phylogenetic relationships in Eulipotyphla. The cytogenetic reconstructions based on these data do not conflict with molecular phylogenies supporting basal position of Talpidae in the order.  相似文献   

7.
Two recently introduced multicolor FISH approaches, cross-species color banding (also termed Rx-FISH) and multiplex FISH using painting probes derived from somatic cell hybrids retaining fragments of human chromosomes, were applied in a comparative molecular cytogenetic study of higher primates. We analyzed these "chromosome bar code" patterns to obtain an overview of chromosomal rearrangements that occurred during higher primate evolution. The objective was to reconstruct the ancestral genome organization of hominoids using the macaque as outgroup species. Approximately 160 individual and discernible molecular cytogenetic markers were assigned in these species. Resulting comparative maps allowed us to identify numerous intra-chromosomal rearrangements, to discriminate them from previous contradicting chromosome banding interpretations and to propose an ancestral karyotype for hominoids. From 25 different chromosome forms in an ancestral karyotype for all hominoids of 2N=48 we propose 21. Probes for chromosomes 2p, 4, 9 and Y were not informative in the present experiments. The orangutan karyotype was very similar to the proposed ancestral organization and conserved 19 of the 21 ancestral forms; thus most chromosomes were already present in early hominoid evolution, while African apes and human show various derived changes.  相似文献   

8.
The family Hippopotamidae is comprised of two genera with two living species, the common hippo (Hippopotamus amphibius) and the pygmy hippo (Choeropsis liberiensis). Unlike the common hippo, the karyotype of C. liberiensis has not yet been investigated via cross-species chromosome painting methods. We established chromosomal homologies between the pygmy hippo, pig, and cattle by fluorescence in situ hybridization using whole chromosome, arm-specific, region specific, and bacterial artificial chromosome (BAC) probes. Probes from the 18 pig autosomes painted 45 conserved chromosomal segments in the pygmy hippo genome. The pygmy hippo and cattle homology map was deduced from our hybridization results of painting probes to pygmy hippo chromosomes with a combination of previously published dromedary hybridization data. On the pygmy hippo and cattle homology map, 29 cattle autosomes revealed 39 conservative segments on pygmy hippo chromosomes. For a more detailed structural analysis of genome rearrangements and X chromosome structure, we used cattle region specific and BAC probes. Our report demonstrates that cattle probes are useful not only in comparative studies within Ruminantia, but also in more phylogenetically distant Artiodactyla species.  相似文献   

9.
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, Ictonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements.  相似文献   

10.
Canidae species fall into two categories with respect to their chromosome composition: those with high numbered largely acrocentric karyotypes and others with a low numbered principally metacentric karyotype. Those species with low numbered metacentric karyotypes are derived from multiple independent fusions of chromosome segments found as acrocentric chromosomes in the high numbered species. Extensive chromosome homology is apparent among acrocentric chromosome arms within Canidae species; however, little chromosome arm homology exists between Canidae species and those from other Carnivore families. Here we use Zoo-FISH (fluorescent in situ hybridization, also called chromosomal painting) probes from flow-sorted chromosomes of the Japanese raccoon dog (Nyctereutes procyonoides) to examine two phylogenetically divergent canids, the arctic fox (Alopex lagopus) and the crab-eating fox (Cerdocyon thous). The results affirm intra-canid chromosome homologies, also implicated by G-banding. In addition, painting probes from domestic cat (Felis catus), representative of the ancestral carnivore karyotype (ACK), and giant panda (Ailuropoda melanoleuca) were used to define primitive homologous segments apparent between canids and other carnivore families. Canid chromosomes seem unique among carnivores in that many canid chromosome arms are mosaics of two to four homology segments of the ACK chromosome arms. The mosaic pattern apparently preceded the divergence of modern canid species since conserved homology segments among different canid species are common, even though those segments are rearranged relative to the ancestral carnivore genome arrangement. The results indicate an ancestral episode of extensive centric fission leading to an ancestral canid genome organization that was subsequently reorganized by multiple chromosome fusion events in some but not all Canidae lineages.  相似文献   

11.
The laboratory mouse (Mus musculus, 2n = 40), the Chinese hamster (Cricetulus griseus, 2n = 22), and the golden (Syrian) hamster (Mesocricetus auratus, 2n = 44) are common laboratory animals, extensively used in biomedical research. In contrast with the mouse genome, which was sequenced and well characterized, the hamster species has been set aside. We constructed a chromosome paint set for the golden hamster, which for the first time allowed us to perform multidirectional chromosome painting between the golden hamster and the mouse and between the two species of hamster. From these data we constructed a detailed comparative chromosome map of the laboratory mouse and the two hamster species. The golden hamster painting probes revealed 25 autosomal segments in the Chinese hamster and 43 in the mouse. Using the Chinese hamster probes, 23 conserved segments were found in the golden hamster karyotype. The mouse probes revealed 42 conserved autosomal segments in the golden hamster karyotype. The two largest chromosomes of the Chinese hamster (1 and 2) are homologous to seven and five chromosomes of the golden hamster, respectively. The golden hamster karyotype can be transformed into the Chinese hamster karyotype by 15 fusions and 3 fissions. Previous reconstructions of the ancestral murid karyotype proposed diploid numbers from 2n = 52 to 2n = 54. By integrating the new multidirectional chromosome painting data presented here with previous comparative genomics data, we can propose that syntenies to mouse Chrs 6 and 16 were both present and to hypothesize a diploid number of 2n = 48 for the ancestral Murinae/Cricetinae karyotype.  相似文献   

12.
A panel of human chromosome painting probes and bacterial and P1 artificial chromosome (BAC/PAC) clones were used in fluorescence in situ hybridization (FISH) experiments to investigate the chromosome conservation of the ring-tailed lemur (Lemur catta, LCA) with respect to human. Whole chromosome paints specific for human chromosomes 7, 9, 11, 13, 14, 17, 18, 20, 21, and X were found to identify a single chromosome or an uninterrupted chromosomal region in LCA. A large set of partial chromosome paints and BAC/PAC probes were then used to refine the characterization of the rearrangements differentiating the two karyotypes. The results were also used to reconstruct the ancestral Lemuridae karyotype. Lemur catta, indeed, can be used as an outgroup, allowing symplesiomorphic (ancestral) rearrangements to be distinguished from apomorphic (derived) rearrangements in lemurs. Some LCA chromosomes are difficult to distinguish morphologically. The 'anchorage' of most LCA chromosomes to specific probes will contribute to the standardization of the karyotype of this species.  相似文献   

13.
We used multidirectional chromosome painting with probes derived by bivariate fluorescence-activated flow sorting of chromosomes from human, black lemur (Eulemur macaco macaco) and tree shrew (Tupaia belangeri, order Scandentia) to better define the karyological relationship of tree shrews and primates. An assumed close relationship between tree shrews and primates also assists in the reconstruction of the ancestral primate karyotype taking the tree shrew as an ”outgroup” species. The results indicate that T. belangeri has a highly derived karyotype. Tandem fusions or fissions of chromosomal segments seem to be the predominant mechanism in the evolution of this tree shrew karyotype. The 22 human autosomal painting probes delineated 40 different segments, which is in the range found in most mammals analyzed by chromosome painting up to now. There were no reciprocal translocations that would distinguish the karyotype of the tree shrew from an assumed primitive primate karyotype. This karyotype would have included the chromosomal forms 1a, 1b, 2a, 2b, 3/21, 4–11, 12a/22a, 12b/22b, 13, 14/15, 16a, 16b, 17, 18, 19a, 19b, 20 and X and Y and had a diploid chromosome number of 2n=50. Of these forms, chromosomes 1a, 1b, 4, 8, 12a/22a, and 12b/22bmay be common derived characters that would link the tree shrew with primates. To define the exact phylogenetic relationships of the tree shrews and the genomic rearrangements that gave rise to the primates and eventually to humans further chromosome painting in Rodentia, Lagomorpha, Dermoptera and Chiroptera is needed, but many of the landmarks of genomic evolution are now known. Received: 11 February 1999; in revised form: 17 June 1999 / Accepted: 20 July 1999  相似文献   

14.
Cross-species painting (fluorescence in situ hybridization) with 23 (human Homo sapiens (HSA)) chromosome-specific painting probes (HSA 1-22 and the X) was used to delimit regions of homology on the chromosomes of the golden mole (Chrysochloris asiaticus) and elephant-shrew (Elephantulus rupestris). A cladistic interpretation of our data provides evidence of two unique associations, HSA 1/19p and 5/21/3, that support Afrotheria. The recognition of HSA 5/3/21 expands on the 3/21 synteny originally designated as an ancestral state for all eutherians. We have identified one adjacent segment combination (HSA2/8p/4) that is supportive of Afroinsectiphillia (aardvark, golden mole, elephant-shrew). Two segmental combinations (HSA 10q/17 and HSA 3/20) unite the aardvark and elephant-shrews as sister taxa. The finding that segmental syntenies in evolutionarily distant taxa can improve phylogenetic resolution suggests that they may be useful for testing sequence-based phylogenies of the early eutherian mammals. They may even suggest clades that sequence trees are not recovering with any consistency and thus encourage the search for additional rare genomic changes among afrotheres.  相似文献   

15.
The Ursidae family includes eight species, the karyotype of which diverges somewhat, in both chromosome number and morphology, from that of other families in the order Carnivora. The combination of consensus molecular phylogeny and high-resolution trypsin G-banded karyotype analysis has suggested that ancestral chromosomal fissions and at least two fusion events are associated with the development of the different ursid species. Here, we revisit this hypothesis by hybridizing reciprocal chromosome painting probes derived from the giant panda (Ailuropoda melanoleuca), domestic cat (Felis catus), and man (Homo sapiens) to representative bear species karyotypes. Comparative analysis of the different chromosome segment homologies allowed reconstruction of the genomic composition of a putative ancestral bear karyotype based upon the recognition of 39 chromosome segments defined by painting as the smallest conserved evolutionary unit segments (pSCEUS) among these species. The different pSCEUS combinations occurring among modern bear species support and extend the postulated sequence of chromosomal rearrangements and provide a framework to propose patterns of genome reorganization among carnivores and other mammal radiations.  相似文献   

16.
Vespertilionidae is the largest chiropteran family that comprises species of different specialization and wide geographic distribution. Up to now, only a few vespertilionid species have been studied by molecular cytogenetic approaches. Here, we have investigated the karyotypic relationships of 4 Vespertilionidae species from Siberia by G-banding and comparative chromosome painting. Painting probes from Aselliscus stoliczkanus were used to establish interspecific homologous chromosomal segments in Myotis dasycneme (2n = 44), Murina hilgendorfi (2n = 44), Plecotus auritus (2n = 32), and Vespertilio murinus (2n = 38). Robertsonian translocations and a few inversions differentiated the karyotypes of the examined species. Painting of P. auritus karyotype with human probes revealed 3 previously undetected cryptic segments homologous to human chromosomes (Homo sapiens, HSA) 8, 15, and 19, respectively. As a consequence, the existence of 2 HSA 4 + 8 syntenies in the P. auritus karyotype has been proven. In addition, a pericentric inversion or centromere shift was revealed on the smallest metacentric P. auritus chromosome 16/17 using the HSA 16 probe explaining the different G-banding pattern in comparison to the homologous Myotis chromosome 16/17.  相似文献   

17.
Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equus burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae.  相似文献   

18.
We report on the first reciprocal chromosome painting of lorisoids and humans. The chromosome painting showed a remarkable syntenic homology between Otolemur and Nycticebus. Eight derived syntenic associations of human segments are common to both Otolemur and Nycticebus, indicative of a considerable period of common evolution between the greater galago and the slow loris. Five additional Robertsonian translocations form the slow loris karyotype, while the remaining chromosomes are syntenically equivalent, although some differ in terms of centromere position and heterochromatin additions. Strikingly, the breakpoints of the human chromosomes found fragmented in these two species are apparently identical. Only fissions of homologs to human chromosomes 1 and 15 provide significant evidence of a cytogenetic link between Lemuriformes and Lorisiformes. The association of human chromosomes 7/16 in both lorisoids strongly suggests that this chromosome was present in the ancestral primate genome.  相似文献   

19.
Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred ~6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.  相似文献   

20.
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号