首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The urinary tract is among the most common sites of bacterial infection and E. coli is by far the most common infecting agent in children and adults of both sexes. In an attempt to evaluate the intrinsic virulence of E. coli uroisolates from children, 54 strains were assessed by using PCR for the presence of five representative genetic determinants coding for adherence systems (pap, sfa/foc, afa), and toxins (hly and cnf). The prevalence of pap, sfa/foc and afa genes was 55%, 54%, and 44%, respectively. Hemolysin-encoding gene hly was detected in 55% strains, while cnf was exhibited by 35% of the screened E. coli isolates. Among the 39 PCR positive strains isolated from children's urine cultures the co-occurrence of the various targeted virulence genes was detected in 30 strains, the virulence profiles identified suggesting the presence of their localization on chromosomal regions known as pathogencity-associated islands. The rapid and reliable detection of the intrinsic virulence potential by this molecular approach could be very useful when evaluating the importance of microorganism pathogenicity versus host's susceptibility for developing an overt symptomatology of infection.  相似文献   

2.
A total of 78 E. coli strains isolated from adults with different types of urinary tract infections were screened by polymerase chain reaction for prevalence of genetic regions coding for virulence factors. The targeted genetic determinants were those coding for type 1 fimbriae ( fimH ), pili associated with pyelonephritis ( pap ), S and F1C fimbriae ( sfa and foc ), afimbrial adhesins ( afa ), hemolysin ( hly ), cytotoxic necrotizing factor ( cnf ), aerobactin ( aer ). Among the studied strains, the prevalence of genes coding for fimbrial adhesive systems was 86 %, 36%, and 23% for fimH, pap , and sfa/foc , respectively. The operons coding for Afa afimbrial adhesins were identified in 14% of strains. The hly and cnf genes coding for toxins were amplified in 23% and 13% of strains, respectively. A prevalence of 54% was found for the aer gene. The various combinations of detected genes were designated as virulence patterns. The strains isolated from the hospitalized patients displayed a greater number of virulence genes and a diversity of gene associations compared to the strains isolated from the ambulatory subjects. A rapid assessment of the bacterial pathogenicity characteristics may contribute to a better medical approach of the patients with urinary tract infections.  相似文献   

3.
Eight virulence factors associated with uropathogenic Escherichia coli (UPEC) were investigated in 204 clinical isolates of E. coli recovered from urine cultures at counts ≥10(5). The bacteria were classified into two groups according to the number of leukocytes in urine samples from which they were isolated: group I ≤8 leukocytes/hpf, 104 strains; group II >8 leukocytes/hpf, 100 strains. Two multiplex PCR systems were used to detect genes encoding adhesin P (pap), adhesin S (sfa), afimbrial adhesin I (afa), siderophore aerobactin (aer), alpha-hemolysin (hly), cytotoxic necrotizing factor type 1 (cnf1), and traT associated with serum resistance. The PAI marker for the virulence island identified in strains CFT072 and CVD432, a marker of enteroaggregative E. coli, was also investigated using PCR. The susceptibility profile of E. coli strains was determined by disk diffusion method. Ninety percent UPEC showed at least one of the virulence genes, the prevalence being traT (76%), aer (41%), PAI (32%), sfa (26%), pap (25%), cnf1 (18%), afa (6%), and hly (5%). There was no significant difference in the distribution of virulence genes between groups I and II. A significantly higher degree of virulence was detected in UPEC group II. The CVD432 gene was not detected in any of the UPECs. Fifty-nine percent of the strains were resistant to at least one of the antimicrobials that we tested; the most common being resistance to ampicillin (51%) and trimethoprim-sulfamethoxazole (44%).  相似文献   

4.
Escherichia coli, heterogeneous species consisting of commensal and pathogenic strains, is causing a broad spectrum of intestinal and extra intestinal diseases, ranging from asymptomatic infections to septicaemia, according to its capacity to produce different virulence factors. The incidence of different virulence-associated genes among the strains isolated from healthy subjects, taking into account that the human gastrointestinal tract is considered an important source for spreading E. coli strains, was evaluated. A total of 241 E. coli strains isolated from 41 healthy subjects, working in the food chain and coming to the laboratory for periodical medical control, were investigated for harbouring patogenicity factors--encoding genes. Extra intestinal virulence-associated genes, pap, sfa/foc, afa, hly, cnf and intestinal ones eaea, bfp, agg, It, st, vtx1 (stx1), vtx2 (stx2) and ipaH, were targeted by PCR using cellular lysate for total DNA. Genes encoding for adherence were the most prevalent. A number of 67 strains (27.80%) were positive for pap genes and 34 strains (14.11%) presented PCR positive results when afa genes were targeted, but sfa/foc genes were identified in only 10 strains (4.15%). Genes encoding for toxigenesis were less prevalent. A total of 9 strains amplified hly genes, 2.49% were positive for cnf genes and only 2 strains presented vtx1(stx1) gene. The results are in concordance with those which demonstrate that healthy subjects carrying strains possessing virulence-encoding genes could represent a reservoir for environmental circulation of such strains, considered life-threatening when a receptive host is encountered.  相似文献   

5.
Abstract Primers to amplify the genes encoding the virulence factors of uropathogenic Escherichia coli , such as pilus associated with pyelonephritis ( pap ), haemolysin ( hly ), aerobactin ( aer ) and cytotoxic necrotizing factor 1 ( cnf 1) genes, were designed. The above primers along with previously reported primers for S fimbriae ( sfa ) and afimbrial adhesin I ( afaI ) genes were combined to develop a multiplex polymerase chain reaction (PCR) for detection of the respective virulence factors and for the identification of uropathogenic E. coli . The multiplex PCR to detect pap, sfa, afa I, hly, aer and cnf 1 genes was highly specific and the sensitivity was found to be about 5 × 103 colony forming units of E. coli per ml. A total of 194 E. coli strains isolated from patients with simple acute cystitis were examined by the multiplex PCR and the results were in complete agreement with that obtained by DNA colony hybridization test. The multiplex PCR developed was, therefore, concluded to be a useful, sensitive and rapid assay system to identify uropathogenic E. coli .  相似文献   

6.
Fimbrial adhesins enable bacteria to attach to eucaryotic cells. The genetic determinants for S fimbrial adhesins (sfa) and for F1C ("pseudotype I") fimbriae (foc) were compared. Sfa and F1C represent functionally distinct adhesins in their receptor specificities. Nevertheless, a high degree of homology between both determinants was found on the basis of DNA-DNA hybridizations. Characteristic differences in the restriction maps of the corresponding gene clusters, however, were visible in regions coding for the fimbrial subunits and for the S-specific adhesin. While a plasmid carrying the genetic determinant for F1C fimbriae was able to complement transposon-induced sfa mutants, a plasmid carrying the genetic determinant for a third adhesin type, termed P fimbriae, was unable to do so. Proximal sfa-specific sequences carrying the S fimbrial structural gene were fused to sequences representing the distal part of the foc gene cluster to form a hybrid cluster, and the foc proximal region coding for the structural protein was ligated to sfa distal sequences to form a second hybrid. Both hybrid clones produced intact fimbriae. Anti-F1C monoclonal antibodies (MAbs) only recognized clones which produced F1C fimbriae, and an anti-S adhesin MAb marked clones which expressed the S adhesin. However, one of four other anti-S fimbriae-specific MAbs reacted with both fimbrial structures, S and F1C, indicating a common epitope on both antigens. The results presented here support the view that sfa and foc determinants code for fimbriae that are similar in several aspects, while the P fimbriae are members of a more distantly related group.  相似文献   

7.
ABSTRACT: BACKGROUND: Uropathogenic E.coli (UPEC) are among major pathogens causing urinary tract infections. Virulence factors are mainly responsible for the severity of these emerging infections. This study was planned to investigate the distribution of virulence genes and cytotoxic effects of UPEC isolates with reference to phylogenetic groups (B2, B1, D and A) to understand the presence and impact of virulence factors in the severity of infection in Faisalabad region of Pakistan. METHODS: In this study phylogenetic analysis, virulence gene identification and cytotoxicity of 59 uropathogenic E.coli isolates obtained from non-hospitalized patients was studied. RESULTS: Among 59 isolates, phylogenetic group B2 (50%) was most dominant followed by groups A, B1 (19% each) and D (12 %). Isolates present in group D showed highest presence of virulence genes. The prevalence hlyA (37%) was highest followed by sfaDE (27%), papC (24%), cnf1 (20%), eaeA (19%) and afaBC3 (14%). Highly hemolytic and highly verotoxic isolates mainly belonged to group D and B2. We also found two isolates with simultaneous presence of three fimbrial adhesin genes present on pap, afa, and sfa operons. This has not been reported before and underlines the dynamic nature of these UPEC isolates. CONCLUSIONS: It was concluded that in local UPEC isolates from non-hospitalized patients, group B2 was more prevalent. However, group D isolates were most versatile as all were equipped with virulence genes and showed highest level of cytotoxicity.  相似文献   

8.
Formally included in the larger category of extraintestinal pathogenic Escherichia coli (ExPEC), the uropathogenic E. coli remains the most frequent cause of urinary tract infection (UTI), an important endemic health problem. The genomic DNA of E. coli urinary isolates from adults diagnosed with urinary tract infections and of E. coli fecal isolates from healthy subjects was analysed by PCR for the presence of virulence factor encoding genes pap, sfa/foc, afa, hly and cnf and by field inversion gel electrophoresis (FIGE) fingerprinting of XbaI DNA macrorestriction fragments. The aim was to obtain more detailed microbiological data regarding the community circulating strains in respect of their virulence potential and genetic relatedness. Almost 70% of the urinary strains carried at least one of the target virulence genes, and only 35.5% of the fecal E. coli strains were positive in the PCR screening. Taking into account the virulence genotypes exhibited, a part of the strains isolated from the urinary tract could be defined as belonging to the ExPEC pathotype. A unique FIGE profile was obtained for each of the selected isolates and the dendrogram generated by Taxotron software package analysis suggested a polyclonal population of potential uropathogenic strains clustered into 14 groups of only 60% similarity. For better understanding the epidemiology of UTIs, diseases commonly caused by such a heterogeneous species like E. coli, molecular analysis methods could be essential due to their increased power of identification and fingerprinting.  相似文献   

9.
10.
Uropathogenic Escherichia coli frequently express globoside-specific adhesins, shown to mediate binding to uroepithelial cells. For one gene cluster pap, it recently has been demonstrated that globoside binding is not dependent on expression of the pilus subunit gene papA. Instead, two other pap genes papF and papG are specifically required for globoside binding (F. P. Lindberg et al., EMBO J. 3:1167-1173, 1984). By restriction enzyme mapping, DNA hybridization, DNA sequencing, and protein expression in minicells, we show that three gene clusters encoding globoside binding have a very similar structure and gene organization, although they were cloned from different E. coli isolates. Major differences between the adhesin clones were restricted to the central part of the pilin gene (papA) and to one of the two adhesin gene (papG). The three functional units required for biogenesis of globoside-binding pili, i.e., pilin synthesis, pilin export, and pilin assembly, as well as expression of adhesion function, were all trans complementable among the gene clusters.  相似文献   

11.
Abstract Expression of globoside-specific pilus adhesin of Escherichia coli is the virulence factor most commonly associated with pyelonephritis. In the clinical isolate J96 (O4:K6:H5) expression of globoside binding pili require the proteins encoded by the papE, papF , and papG genes in the pap gene cluster. Probes derived from these genes were used in dot blot hybridization analysis of E. coli urinary tract isolates obtained from patients with significant bacteriuria. Fecal E. coli isolates from healthy individuals were also analyzed. The probe encompassing the papF and papF J96 genes hybridized to all urinary tract infectious (UTI) isolates expressing globoside-specific adhesin, whereas papG J96 only hybridized to the strain from which the fragment was cloned. In contrast, a papG -specific probe from the O:6 strain IA2 hybridized to all but one of the UTI isolates that expressed the adhesin. In both materials, but especially among the fecal isolates, strains were found that hybridized to the probes but did not express the adhesin. The data shows that papEF -specific DNA can be used for the diagnosis of potentially pyelonephritic E. coli .  相似文献   

12.
Bovine and porcine enterotoxigenic and non-enterotoxigenic Escherichia coli isolates from France, Canada, and India were characterized with respect to serogroup and production of fimbrial antigens CS31A and F165. Of 231 bovine isolates from the 3 countries, 20.5% produced CS31A alone, 17.7% produced F165 alone, and 17.3% produced both CS31A and F165. On the other hand, of 84 porcine isolates from Canada, 1.2% produced CS31A alone, 14.3% produced F165 alone, and no isolate produced both CS31A and F165. CS31A was found together with F5 (K99) in 7 of 16 bovine enterotoxigenic E. coli isolates of serogroups 08, 09, 020, and 023, but was not found in any of 20 F4 (K88)- or 5 F6 (987P)-positive porcine enterotoxigenic E. coli isolates. F165 was not found in enterotoxigenic E. coli. Among non-enterotoxigenic isolates, CS31A and F165 were mainly associated with serogroups 08, 09, 011, 015, 017, 023, 025, 078, 0101, 0115, 0117, 0141, and 0153.  相似文献   

13.
14.
Uropathogenic Escherichia coli frequently express P-pilus adhesins that recognize Gal alpha (1-4)Gal-containing glycoconjugates. The P-pilus adhesin of the E. coli isolate J96 is encoded by the pap gene cluster and has been shown to agglutinate P1-erythrocytes. We now describe a novel gene cluster from J96, prs, which is responsible for the agglutination of sheep erythrocytes. The structurally related gene clusters both expressed pili exhibiting the F13 antigen. Analysis of mutants of cloned prs sequences, together with trans-complementation of pap and prs genes, identified the sheep-specific adhesin as the 37-kD PrsG protein. The prsG gene occupies the equivalent position in prs as occupied by papG, which specifies the Gal alpha (1-4)Gal-specific adhesin of pap. PrsG was shown to be structurally distinct from PapG since PapG-specific antiserum did not cross-react with PrsG. Using a solid phase glycolipid receptor binding assay, PrsG was found to specify preferential binding to the Forssman antigen, a major constituent of sheep erythrocyte membranes. The binding epitope was identified as the GaINAc alpha (1-3)GaINAc moiety. This is the first direct evidence that serologically identical pili may present antigenically distinct adhesins, each capable of binding to a specific receptor.  相似文献   

15.
16.
Diffusely adherent Escherichia coli (DAEC) strains are currently considered to constitute a putative sixth group of diarrheagenic E. coli. However, on the basis of their diffuse adherence to HEp-2 and HeLa cells, the detection of afa/dra/daa-related operons encoding this adherence phenotype, and the mobilization of decay-accelerating factor, both commensal and pathogenic strains can be classified as Afa/Dr DAEC isolates. Furthermore, strains associated with diarrheal diseases and strains causing extra-intestinal infections can also be identified as Afa/Dr DAEC strains. Although several cell signaling events that occur after epithelial cells have been infected by Afa/Dr DAEC have been reported, the pathophysiological processes that allow intestinal and extra-intestinal infections to develop are not fully understood. This review focuses on the genetic organization of the afa/dra/daa-related operons and on the virulence factors that trigger cellular responses, some of which are deleterious for the host cells. Finally, this review suggests future lines of research that could help to elucidate these questions.  相似文献   

17.
18.
Escherichia coli DNA adenine methyltransferase (Dam) plays essential roles in DNA replication, mismatch repair and gene regulation. The differential methylation by Dam of the two GATC sequences in the pap promoter regulates the expression of pili genes necessary for uropathogenic E.coli cellular adhesion. Dam processively methylates GATC sites in various DNA substrates, yet the two pap GATC sites are not processively methylated. We previously proposed that the flanking sequences surrounding the two pap GATC sites contribute to the enzyme's distributive methylation. We show here that replacement of the poorly methylated pap GATC sites with sites predicted to be processively methylated indeed results in an increase in Dam processivity. The increased processivity is due to a change in the methyltransfer kinetics and not the binding efficiency of Dam. A competition experiment in which the flanking sequences of only one pap GATC site were altered demonstrates that the GATC flanking sequences directly regulate the enzyme's catalytic efficiency. The GATC flanking sequences in Dam-regulated promoters in E.coli and other bacteria are similar to those in the pap promoter. Gene regulation from some of these promoters involves mechanisms and proteins that are quite different from those in the pap operon. Further, GATC sequences previously identified to remain unmethylated within the E.coli genome, but whose function remains largely unassigned, are flanked by sequences predicted to be poorly methylated. We conclude that the GATC flanking sequences may be critical for expression of pap and other Dam-regulated genes by affecting the activity of Dam at such sites and, thus, its processivity. A model is proposed, illustrating how the sequences flanking the GATC sites in Dam-regulated promoters may contribute to this epigenetic mechanism of gene expression, and how flanking sequences contribute to the diverse biological roles of Dam.  相似文献   

19.
To identify forces shaping the Escherichia coli intraspecies ecological structure, we have characterized in terms of phylogenetic group (A, B1, D and B2) belonging, presence/absence of extraintestinal virulence genes (pap, sfa, hly and aer) and intra-host phylotype diversity a collection of 1898 commensal isolates originating from 387 animals (birds and mammals) sampled in the 1980s and the 2000s. These data have been compared with 760 human commensal isolates, sampled from 152 healthy subjects in the 2000s, and analysed with the same approach. The prevalence of the E. coli phylogenetic groups in birds, non-human mammals and humans is clearly different with a predominance of D/B1, A/B1 and A/B2 strains respectively. A major force shaping the ecological structure is the environment with a strong effect of domestication and the year of sampling followed by the climate. Host characteristics, as the diet and body mass, also influence the ecological structure. Human microbiota are characterized by a higher prevalence of virulence genes and a lower intra-host diversity than the non-human mammal ones. This work identifies for the first time a group of strains specific to the animals, the B1 phylogenetic group strains exhibiting the hly gene. In conclusion, a complex network of factors seems to shape the ecological structure of commensal E. coli, with anthropogenic factors playing a major role and perturbing natural niche equilibrium.  相似文献   

20.
The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes ( afaA–afaF  ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3 / daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号