首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1988,256(2):633-639
1. Respiration in the parasitic nematode worm Ascaridia galli was inhibited at O2 concentrations in excess of 255 microM, and an apparent Km,O2 of 174 microM was determined. 2. Mitochondria-enriched fractions isolated from the tissues of A. galli have much lower apparent Km,O2 values (approx. 5 microM). They produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 3. Antimycin A inhibited respiration in muscle tissue mitochondria by 10%, but had no effect on respiration in gut + reproductive tissue mitochondria; the major portion of respiration in both types of mitochondria could be attributed to an alternative electron-transport pathway. 4. o-Hydroxydiphenyl, an inhibitor of alternative electron-transport pathways, inhibits respiration by 98% and completely inhibits the production of H2O2 in gut-plus-reproductive-tissue mitochondria; respiration and H2O2 production in muscle tissue mitochondria were inhibited by 90 and 86% respectively. 5. Another inhibitor of alternative electron transport, salicylhydroxamic acid, had the same effect as o-hydroxydiphenyl on H2O2 production and respiration in gut-plus-reproductive-tissue mitochondria. However, its effect on muscle tissue mitochondria was complex; a low concentration (0.35 mM) stimulated H2O2 production, whereas 3 mM inhibited respiration by 87% and prevented H2O2 production completely. 6. The similarities between the apparent Km,O2 values for H2O2 production and respiration in muscle mitochondria and in gut-plus-reproductive-tissue mitochondria suggests that the site of H2O2 production on the alternative electron-transport chain is cytochrome 'o'. 7. These results are discussed in relation to potential O2 toxicity in A. galli.  相似文献   

2.
J E Ellis  A G Williams    D Lloyd 《Applied microbiology》1989,55(10):2583-2587
The relative contributions to O2 consumption made by the protozoal and bacterial populations present within the rumen were determined by using an open-type oxygen electrode system. Measurements indicated that two separate microbial populations contributed approximately equally to ruminal O2 consumption over the O2 concentration range experienced in situ (0.25 to 1.0 microM). The populations were observed to consume O2 under liquid-phase O2 concentrations of up to 7 microM, above which point rapid inactivation of O2 utilization was observed. Km values for the mixed population of bacteria and protozoa were 0.36 +/- 0.17 and 3.2 +/- 0.4 microM at concentrations of less than 1.6 and greater than 1.6 microM, respectively. O2 affinity values obtained for both the protozoal and bacterial populations were similar. O2 affinities of the isolated entodiniomorphid ciliates Polyplastron multivesiculatum and Eudiplodinium maggii showed O2 inhibition thresholds of 10 and 5, respectively, and apparent half-saturation constants (Km values) of 1.7 and 5.2 microM O2, respectively. Corresponding Vmax values were 7.8 microM O2 per min per 10(5) organisms for P. multivesiculatum and 3.6 microM O2 per min per 10(5) organisms for E. maggii. Mass spectroscopic analysis detected average rates of H2 production of 12.0 and 3.7 microM H2 per min per 10(5) organisms for P. multivesiculatum and E. maggii, respectively. Trace levels of dissolved O2 (less than 0.25 microM) stimulated the H2 production rate of E. maggii eightfold but inhibited that of P. multivesiculatum by 18%.  相似文献   

3.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1987,243(2):589-595
1. Mitochondria from the parasitic nematode worm Nippostrongylus brasiliensis produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 2. Antimycin A inhibits respiration and H2O2 production by 70 and 65% respectively; the residual activities can be attributed to alternative electron-transport pathway(s). 3. o-Hydroxydiphenyl and 1,3,5-trihydroxybenzene, inhibitors of alternative electron transport, inhibit respiration by 37% and H2O2 production by 26%. 4. Another inhibitor of alternative electron transport, salicylhydroxamic acid, shows a complex mode of action; low concentrations (less than 0.5 mM) stimulate respiration and H2O2 production, whereas 2 mM-salicylhydroxamic acid inhibited respiration by 35% and stopped H2O2 production completely. 5. O2 thresholds were observed for the inhibition of respiration at O2 concentrations greater than 57.7 microM and inhibition of H2O2 production (greater than 20.5 microM-O2); apparent Km values for oxygen were 5.5 microM and 3.0 microM respectively. 6. In the presence of antimycin A the O2-inhibition thresholds and apparent Km values for O2 of respiration and H2O2 production matched closely, suggesting that the alternative oxidase is a likely site of H2O2 production. 7. These results are discussed in relation to O2 toxicity to N. brasiliensis.  相似文献   

4.
Polyamine degradation in foetal and adult bovine serum.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine.  相似文献   

5.
Differences among cystic fibrosis (CF) genotypes (CF, obligate carriers for CF [HZ], and controls) in mitochondrial calcium pool size, oxygen (O2) consumption, and rotenone inhibition of O2 consumption led to examination of mitochondrial NADH dehydrogenase (NADH: [acceptor] oxidoreductase, E.C. 1.6.99.3). pH optima of mitochondrial NADH dehydrogenase were different in enzyme derived from whole cell homogenates of cultured skin fibroblasts of subjects with CF, HZ, and controls. We describe here apparent binding of substrate to the enzyme (Km [NADH]) in cell fractions. Km (NADH) for CF ranged from 10.9 to 16.1 micro M (no. = 7); for HZ from 20.9 to 26.3 microM (no. = 5). With three exceptions, Km for controls (no. = 12) ranged from 31.8 to 42.8 microM. Km of the three exceptional controls were 21.5, 23.7, and 22.4 microM (the latter two are identical twins). pH optima of enzyme from these three strains were no different from that of known HZ. The correlation between two kinetic parameters of an enzyme and the three CF genotypes suggests an association between the CF gene and mitochondrial NADH dehydrogenase.  相似文献   

6.
The oxidative decarboxylation of L-tryptophan to yield 3-indoleacetamide, catalyzed by tryptophan 2-monooxygenase, represents a controlling reaction in the synthesis of indoleacetic acid by Pseudomonas savastanoi (Pseudomonas syringae pv. savastanoi), a gall-forming pathogen of olive (Olea europea L.) and oleander (Nerium oleander L.). Production of indoleacetic acid is essential for virulence of the bacterium in its hosts. Tryptophan 2-monooxygenase was characterized to determine its role in indoleacetic acid metabolism in the bacterium. The enzyme was purified to apparent homogeneity from Escherichia coli cells containing the genetic locus for this enzyme obtained from P. savastanoi. The preparation contained a single polypeptide with a mass of 62,000 that cross-reacted immunologically with a homologous protein in P. savastanoi. The holoenzyme contained one FAD moiety/subunit with properties consistent with a catalytic function. The enzyme preparation catalyzed an L-tryptophan-dependent O2 uptake and yielded 3-indoleacetamide as a product. Enzyme activity fit simple Michaelis Menten kinetics with a Km for L-tryptophan of 50 microM. 3-Indoleacetamide and 3-indoleacetic acid were identified as regulatory effectors. The apparent Ki for 3-indoleacetamide was 7 microM; that for indoleacetic acid was 225 microM. At Km concentrations of tryptophan, enzyme activity was inhibited 50% by 25 microM 3-indoleacetamide. In contrast, 230 microM indoleacetic acid was required to effect a similar inhibition. Phenylalanine and tyrosine were ineffective as regulatory metabolites. These results indicate that IAA synthesis in P. savastanoi is regulated by limiting tryptophan and by feedback inhibition from indoleacetamide and indoleacetic acid.  相似文献   

7.
NADPH-dependent 2,6-dichlorophenol-indophenol (DCIP) reductase activity in the homogenate of phagocytosing pig polymorphonuclear leucocytes was twice that of the resting cells and the activity in the phagocytic vesicles corresponded to the activity increment due to phagocytosis. The apparent Km value of the reductase activity in the vesicles for NADPH was 30 microM, which is similar to that of the NADPH-dependent superoxide (O2-) formation. Increasing the DCIP reductase activity by increasing the DCIP concentration caused a decrease in the O2- -forming activity, the NADPH oxidation rate being constant and independent of the dye concentration. p-Chloromercuribenzoate and cetyltrimethylammonium bromide at low concentrations inhibited the O2- -forming activity of the vesicles without inhibiting the DCIP reductase. Quinacrine inhibited both O2- formation and DCIP reduction. The DCIP reductase activity could be extracted with a mixture of deoxycholate and Tween-20, which extracts the O2- -forming activity. The reductase activity in the extract was enhanced 2-fold by the addition of FAD, and its apparent Km was 0.085 microM. These results indicate that the NADPH-dependent DCIP reductase activity of the phagocytic vesicles is catalysed by a flavin-containing component of the O2- -forming system.  相似文献   

8.
9.
The interactions between Schizosaccharomyces pombe and Saccharomyces spp. (S. cerevisiae, S. cerevisiae sake, S. bayanus, S. uvarum) were investigated by growing the yeasts in sterile, partially fermented glucose asparagine medium in flasks, and also in the Ecologen containing either synthetic medium or grape must be separating the adjacent chambers with membranes which allow free movement of medium but not of cells. The growth of Sch. pombe was inhibited by Saccharomyces spp. to a varied extent, but the reverse was not observed. Saccharomyces uvarum, and S. cerevisiae more strongly inhibited Sch. pombe than the other species tested. All three strains of Sch. pombe (ICV-M, BG, ATCC-16979) were inhibited by S. cerevisiae although ICV-M and ATCC strains were more sensitive than BG. The higher growth rate of S. cerevisiae resulted in the exhaustion of nutrients, and its metabolic products could possibly be responsible for the growth inhibition of Sch. pombe. In the light of the present experimental results, the suitability of a two-step fermentation process for making better quality wines from acidic grape musts is discussed.  相似文献   

10.
The relative contributions to O2 consumption made by the protozoal and bacterial populations present within the rumen were determined by using an open-type oxygen electrode system. Measurements indicated that two separate microbial populations contributed approximately equally to ruminal O2 consumption over the O2 concentration range experienced in situ (0.25 to 1.0 microM). The populations were observed to consume O2 under liquid-phase O2 concentrations of up to 7 microM, above which point rapid inactivation of O2 utilization was observed. Km values for the mixed population of bacteria and protozoa were 0.36 +/- 0.17 and 3.2 +/- 0.4 microM at concentrations of less than 1.6 and greater than 1.6 microM, respectively. O2 affinity values obtained for both the protozoal and bacterial populations were similar. O2 affinities of the isolated entodiniomorphid ciliates Polyplastron multivesiculatum and Eudiplodinium maggii showed O2 inhibition thresholds of 10 and 5, respectively, and apparent half-saturation constants (Km values) of 1.7 and 5.2 microM O2, respectively. Corresponding Vmax values were 7.8 microM O2 per min per 10(5) organisms for P. multivesiculatum and 3.6 microM O2 per min per 10(5) organisms for E. maggii. Mass spectroscopic analysis detected average rates of H2 production of 12.0 and 3.7 microM H2 per min per 10(5) organisms for P. multivesiculatum and E. maggii, respectively. Trace levels of dissolved O2 (less than 0.25 microM) stimulated the H2 production rate of E. maggii eightfold but inhibited that of P. multivesiculatum by 18%.  相似文献   

11.
1. Coupled mitochondria were isolated from exponentially growing Physarum polycephalum. 2. Activity of malate dehydrogenase (oxalacetate reduction) was 10.9 mumol/min/mg protein; the apparent Km was 64 microM. 3. The activity of NADP-isocitric dehydrogenase (IDH) was 110 nmol/min/mg with apparent Km of 35 microM. 4. NAD-IDH showed allosteric properties with AMP as a positive modulator. The apparent Km for the unmodulated activity, 2 mM, was decreased to 0.95 mM by 0.13 mM AMP. 5. Succinic dehydrogenase activity was estimated as three times higher than that of alpha-glycerophosphate dehydrogenase. 6. Mitochondria contained significant amounts of phenolic compounds. Protein estimation by the Bradford method is recommended.  相似文献   

12.
Synechococcus glutamate-1-semialdehyde aminotransferase was expressed in large amounts in transformed cells of Escherichia coli. The resulting purified enzyme has an absorption spectrum characteristic of B6-containing enzymes and could be converted to the pyridoxal-phosphate form with excess dioxovalerate (O2Val), and back to the pyridoxamine-phosphate form with diaminovalerate (A2Val). Both enzyme forms are similarly active in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALev), suggesting that A2Val and O2Val are intermediates. Initial rates of ALev synthesis at various fixed concentrations of GSA followed typical Michaelis-Menten kinetics (Km of GSA for the pyridoxamine-phosphate form of GSA aminotransferase = 12 microM, kcat = 0.23 s-1). In submicromolar amounts A2Val stimulates ALev synthesis, and in a series of concentrations with various fixed concentrations of GSA, gives a family of parallel lines in Lineweaver-Burk plots (Km for A2Val = 1.0 microM). On the other hand, O2Val gives competitive inhibition of the pyridoxamine-phosphate form of GSA-aminotransferase and mixed-type inhibition of the pyridoxal-phosphate form (Ki for O2Val = 1.4 mM). In general the kinetics were typical of ping-pong bi-bi mechanisms in which A2Val is the second substrate (intermediate) and O2Val is an alternative first substrate. There is no compelling evidence that O2Val accepts an amino group at its C5 position resulting in the direct formation of ALev, or the reverse involving the apparent formation of O2Val from ALev. These results are consistent with the hypothesis that the mechanism of GSA aminotransferase mimics that of other aminotransferases and that A2Val is the intermediate.  相似文献   

13.
The yeast inheritable [URE3] element corresponds to a prion form of the nitrogen catabolism regulator Ure2p. We have isolated several orthologous URE2 genes in different yeast species: Saccharomyces paradoxus, S. uvarum, Kluyveromyces lactis, Candida albicans, and Schizosaccharomyces pombe. We show here by in silico analysis that the GST-like functional domain and the prion domain of the Ure2 proteins have diverged separately, the functional domain being more conserved through the evolution. The more extreme situation is found in the two S. pombe genes, in which the prion domain is absent. The functional analysis demonstrates that all the homologous genes except for the two S. pombe genes are able to complement the URE2 gene deletion in a S. cerevisiae strain. We show that in the two most closely related yeast species to S. cerevisiae, i.e., S. paradoxus and S. uvarum, the prion domains of the proteins have retained the capability to induce [URE3] in a S. cerevisiae strain. However, only the S. uvarum full-length Ure2p is able to behave as a prion. We also show that the prion inactivation mechanisms can be cross-transmitted between the S. cerevisiae and S. uvarum prions.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, two membrane-associated enzymes catalyze the three-step methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC). Phosphatidylethanolamine methyltransferase (PEMT) catalyzes the first methylation reactions (PE----phosphatidylmonomethylethanolamine (PMME] and phospholipid methyltransferase (PLMT) catalyzes the second two methylation reactions (PMME----phosphatidyldimethylethanolamine (PDME)----PC). Using gene disruption mutants of the S. cerevisiae OP13 and CHO2 genes, we independently studied the enzymological properties of microsome-associated PEMT and PLMT, respectively. The enzymological properties of the enzymes differed with respect to their pH optima, cofactor requirements and thermal lability. For the PEMT reactions, the apparent Km values for PE and S-Adenosylmethionine (AdoMet) were 57 microM and 110 microM, respectively. For the PLMT reactions, the apparent Km values for PMME and PDME were 380 microM and 180 microM, respectively. The apparent Km values for AdoMet were 54 microM and 59 microM with PMME and PDME as substrates, respectively. S-Adenosylhomocysteine (AdoHcy) was a competitive inhibitor of PEMT (Ki = 12 microM) and PLMT (Ki = 57 microM and Ki = 54 microM for PMME and PDME, respectively) with respect to AdoMet. AdoHcy was a noncompetitive inhibitor of PEMT (Ki = 160 microM) and PLMT (Ki = 120 microM) with respect to PE and PMME and PDME, respectively.  相似文献   

15.
Present evidence suggests that skin is an important organ of prostaglandin metabolism. To clarify its role, the basic kinetics of 15-hydroxyprostaglandin dehydrogenase (PGDH) from rat skin were investigated with either NAD+ of NADP+ as co-substrate. Prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) were used as substrates and preliminary studies were made of the inhibitory effects of the reduced co-substrates NADH and NADPH. A radiochemical assay was used in which [3H]PGF2 alpha or [14C]PGE2 were incubated with high-speed supernatant of rat skin homogenates. The substrate and products were then extracted by solvent partition, separated by t.l.c. and quantified by liquid-scintillation counting. At linear reaction rates and at an NAD+ concentration of 10 mM the mean apparent Km for PGF2 alpha was 24 microM with a mean apparent Vmax. of 9.8 nmol/s per litre of reaction mixture. For PGE2 the mean apparent Km was 8 microM, with a mean apparent Vmax, of 2.7 nmol/s per litre of reaction mixture. With NADP+ as a co-substrate at a concentration of 5 mM a mean apparent Km of 23 microM was obtained for PGF2 alpha with a mean apparent Vmax. of 5.2 nmol/s per litre. For PGE2 values of 7.5 microM and 3.0 nmol/s per litre were obtained respectively. These results show that skin contains NAD+- and NADP+-dependent PGDH. An important finding was that the NADP+-linked enzyme gave Km values for PGE2 that were considerably lower than those reported for NADP+-linked PGDH from other tissues. Furthermore, preliminary inhibition studies with the NAD+-linked PGDH system indicate that this enzyme is not only inhibited by NADH, but also by NADPH, a property not previously reported for NAD+-linked PGDH derived from other tissues.  相似文献   

16.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

17.
J M Zhou  P D Boyer 《Biochemistry》1992,31(12):3166-3171
Previous studies have not provided definitive information about whether ADP or Pi or their complexes with Mg2+ serve as substrates for photophosphorylation and whether free Mg2+ or ADP is required. Results presented show MgADP, MgGDP, or MgUDP are substrates. At variable Mg2+ concentrations, observed velocities are determined by MgADP and not the free ADP concentration. The approximate Km for MgADP with spinach chloroplasts is about 30 microM, for MgGDP 260 microM, and for MgUDP above 5 mM. The apparent Km values for added ADP or Mg2+ are decreased to constant low values near 30 microM as the added Mg2+ or ADP concentrations, respectively, are increased to the millimolar range. With 100 microM added Mg2+, near-maximal velocities can be obtained with excess ADP, but not with excess GDP or UDP. This is explainable by the apparent Km values for MgGDP and MgUDP being well above 100 microM. High phosphorylation rates with excess of either Mg2+ or ADP present show that little or no (less than 2-3 microM) free Mg2+ or ADP is required. In addition, the results show that during rapid photophosphorylation, when one or more catalytic sites are always filled with nucleotide, free ADP does not combine and block the combination of MgADP to catalytic sites that become vacant. This is in contrast to the ability of free ADP to combine tightly with one catalytic site when all catalytic sites are empty. The apparent Km for added ADP above a few micromolar concentration, and with excess Mg2+ present, results from binding of MgADP at a second catalytic site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

19.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

20.
cAMP and cGMP phosphodiesterase (PDE) activity was assayed in human peripheral blood lymphocytes purified by isopycnic centrifugation as well as in lymphocyte preparations further purified to remove contaminating platelets and monocytes. The 16,000 X G supernatant from sonicates of each of these cell preparations contained two hydrolytic activities for cAMP with apparent Km of 1.1 to 2.5 microM and 33 to 66 microM, and a single hydrolytic activity for cGMP with an apparent Km of 6 to 25 microM. When lymphocytes were disrupted by Dounce homogenization, there was only a single, low Km cAMP PDE activity in the homogenate; however, the 16,000 X G supernatant demonstrated 2 Km similar to that seen in sonicated lymphocytes. Treatment of the Dounce preparations with 0.5% Triton X-100 or 1.0% NP-40 converted these preparations to activities similar to those seen in sonicated preparations. cGMP hydrolytic activity was low or absent in the Dounce preparations and was not altered by centrifugation; however, it was markedly enhanced by detergent extraction. These data indicate that human peripheral blood lymphocytes and monocytes have PDE activities similar to those seen in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号