共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l–1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l–1 is 1.6 times that obtained with 40 g l–1. When glucose was in the range of 9 to 40 g l–1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l–1. 相似文献
2.
An efficient process for the preparation of poly(3-hydroxybutyrate) (PHB) microspheres with a narrow size distribution was developed. PHB was produced by a fed-batch culture of Ralstonia eutropha using fructose syrup as the sole carbon source. After autoclaving the bacteria, PHB granules, which accumulated in the cells, were isolated by a detergent/hypochlorite treatment and then spray-dried to obtain the microspheres. The diameters of the PHB microspheres ranged from 0.6 to 1.1 m and the weight-average molecular weights were approximately 50000 with polydispersity indexes of 5.0. The microspheres had a porous internal structure with an average porosity value of 72% and efficiently blocked UV light shorter than 220 nm. When isosorbide dinitrate was used as a model drug, the optimal drug loading concentration of the microspheres for controllable retardation was 3% (w/w). Almost 80% of the loaded drug (3%, w/w) was released within 12 h with typical sustained drug release behaviors. 相似文献
3.
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass
and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content
in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration
of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was
in the range of 2.6–3.9. 相似文献
4.
Production of poly(3-hydroxybutyrate) by solid-state fermentation with <Emphasis Type="Italic">Ralstonia eutropha</Emphasis> 总被引:1,自引:0,他引:1
The use of solid-state fermentation is examined as a low-cost technology for the production of poly(hydroxyalkanoates) (PHAs) by Ralstonia eutropha. Two agroindustrial residues (babassu and soy cake) were evaluated as culture media. The maximum poly(hydroxybutyrate) (PHB) yield was 1.2 mg g–1 medium on soy cake in 36 h, and 0.7 mg g–1 medium on babassu cake in 84 h. Addition of 2.5% (w/w) sugar cane molasses to soy cake increased PHB production to 4.9 mg g–1 medium in 60 h. Under these conditions, the PHB content of the dry biomass was 39% (w/w). The present results indicate that solid-state fermentation could be a promising alternative for producing biodegradable polymers at low cost.Revisions requested 31 August 2004; Revisions received 12 October 2004 相似文献
5.
A simple and effective method for the recovery poly(3-hydroxybutyrate) [P(3HB)] directly from high cell density culture broth with no pretreatment steps has been developed. This method consists of direct addition of sodium dodecyl sulfate (SDS) to the culture broth, shaking, heat treatment, and washing steps. When the SDS/biomass ratio was higher than 0.4, the purity of recovered P(3HB) was over 95% for various cell concentrations of 50–300 g dry cell l–1, with the highest value of 97%. The recovery of P(3HB) was over 90% regardless of cell concentration and SDS dosage (SDS/biomass ratios, 0.1–0.7). One g SDS digests 0.72 g non-P(3HB) cell materials. The reduction in molecular weight, due to degradation of P(3HB) by SDS, was negligible. 相似文献
6.
A. Rahayu Z. Zaleha Ahmad R. M. Yahya M. I. A. Majid A. A. Amirul 《World journal of microbiology & biotechnology》2008,24(11):2403-2409
A one-step cultivation process for the production of biodegradable polymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] by Cupriavidus sp. USMAA2-4 was carried out using various carbon sources. It was found that Cupriavidus sp. USMAA2-4 could produce approximately 44 wt.% copolymer of P(3HB-co-4HB) with 27 mol% 4HB composition when the combination of oleic acid and 1,4-butanediol are used as carbon sources in 60 h
cultivation. The manipulation of carbon-to-nitrogen ratio (C/N) resulted in the increase of dry cell weight, PHA content as
well as 4HB composition. A new strategy of introducing oleic acid and 1,4-butanediol together and separately at different
concentration demonstrated different yield in PHA content ranging from 47 to 58 wt.%. The molecular weight obtained was 234 kDa
(by adding 1,4-butanediol and oleic acid together) and 212 kDa (by adding 1,4-butanediol separately). The copolymer of P(3HB-co-4HB) produced by Cupriavidus sp. USMAA2-4 was detected statistically as a random copolymer when analysed by nuclear magnetic resonance (NMR) spectroscopy. 相似文献
7.
Cintia Marangoni Agenor Furigo Jr. Gláucia Maria Falcão de Aragão 《Biotechnology letters》2000,22(20):1635-1638
With the objective of verifying the influence of oleic acid as a nutritional supplement in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha, cultures were established with 0.3 g oleic acid l–1 and without this supplement, in 30 g inverted sugar l–1 and 1 g propionic acid l–1. The use of this supplement increased the accumulation of polymer from 18.3% to 28.3% (w/w) although the mass of 3-hydroxyvalerate in the polymer remained constant for both cultures. 相似文献
8.
Gang Guk Choi Hyung Woo Kim Young Baek Kim Young Ha Rhee 《Biotechnology and Bioprocess Engineering》2005,10(6):540-545
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced byAlcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of
blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was
higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester
surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy
revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The
results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications. 相似文献
9.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1. 相似文献
10.
Synthesis of biodegradable polyesters by Gram negative bacterium isolated from Malaysian environment
Al Ashraf Amirul S. N. Syairah Ahmad R. M. Yahya M. N. M. Azizan M. I. A. Majid 《World journal of microbiology & biotechnology》2008,24(8):1327-1332
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These
are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis
of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with
either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol
or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources,
P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear
magnetic resonance (NMR) spectroscopy. 相似文献
11.
Chanprateep S Katakura Y Visetkoop S Shimizu H Kulpreecha S Shioya S 《Journal of industrial microbiology & biotechnology》2008,35(11):1205-1215
A new isolated bacterial strain A-04 capable of producing high content of polyhydroxyalkanoates (PHAs) was morphologically
and taxonomically identified based on biochemical tests and 16S rRNA gene analysis. The isolate is a member of the genus Ralstonia and close to Ralstonia eutropha. Hence, this study has led to the finding of a new and unexplored R. eutropha strain A-04 capable of producing PHAs with reasonable yield. The kinetic study of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] production by the R. eutropha strain A-04 was examined using butyric acid and γ–hydroxybutyric acid as carbon sources. Effects of substrate ratio and mole
ratio of carbon to nitrogen (C/N) on kinetic parameters were investigated in shake flask fed-batch cultivation. When C/N was
200, that is, nitrogen deficient condition, the specific production rate of 3-hydroxybutyrate (3HB) showed the highest value,
whereas when C/N was in the range between 4 and 20, the maximum specific production rate of 4-hydroxybutyrate (4HB) was obtained.
Thus, the synthesis of 3HB was growth-limited production under nitrogen-deficient condition, whereas the synthesis of 4HB
was growth-associated production under nitrogen-sufficient condition. The mole fraction of 4HB units increased proportionally
as the ratio of γ–hydroxybutyric acid in the feed medium increased at any value of C/N ratio. Based on these kinetic studies,
a simple strategy to improve P(3HB-co-4HB) production in shake flask fed-batch cultivation was investigated using C/N and substrate feeding ratio as manipulating
variable, and was successfully proved by the experiments.
The nucleotide sequence 1,378 bp reported in this study will appear in the GenBank nucleotide sequence database under accession
number EF988626. 相似文献
12.
Degradation of poly(3-hydroxybutyrate) by soil streptomycetes 总被引:1,自引:0,他引:1
The ability of 64 soil streptomycetes to degrade poly(3-hydroxybutyrate) [P(3HB)] was evaluated on Pridham and Lyons mineral salts agar medium overlayered with the same medium containing 0.2% P(3HB). The streptomycete isolates were grown on this overlayered medium and the degradation was detected by the formation of clear zone surrounding the growth. Four potent degrader isolates identified as species of Streptomyces were selected. Degradation of P(3HB) by these isolates was studied for a period of 8 days. The rate of degradation increased with increase in concentration of P(3HB) in the medium while it decreased with the supplementation of readily utili- zable carbon sources like glucose, fructose and sucrose. All four isolates also degraded the copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB–co–3HV)] in solid medium but to a lesser extent. However, the isolates were equally efficient in degrading P(3HB) in liquid medium. 相似文献
13.
A new thermophilic microorganism capable of degrading poly(D-3-hydroxybutyrate) (PHB) was isolated from soil. A phylogenetic analysis based on 16S rDNA sequences indicated that the new isolate belongs to genus Streptomyces. PHB film and powder were completely degraded after 6 and 3 d cultivation, respectively at 50 degrees C. Scanning micrographs showed adherence of the microbial cells to the entire film surface, indicating that biodegradation occurs by colonization of the PHB surface. The film was degraded both by microbial attack and by the action of an extracellular enzyme secreted by the microorganism. The strain can also degrade poly(ethylene succinate), poly(ester carbonate), polycaprolactone and poly(butylene succinate), but to a lesser extent. 相似文献
14.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis. 相似文献
15.
S. Vigneswari S. Vijaya M. I. A. Majid K. Sudesh C. S. Sipaut M. N. M. Azizan A. A. Amirul 《Journal of industrial microbiology & biotechnology》2009,36(4):547-556
Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell
concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully
produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning
calorimetry. The number-average molecular weights (M
n) of copolymers ranged from 260 × 103 to 590 × 103Da, and the polydispersities (M
w/M
n) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition,
the increase in 4HB composition affected the randomness of copolymer, melting temperature (T
m), glass transition temperature (T
g), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol%
but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast
cells. 相似文献
16.
Poly(3-hydroxybutyrate) (PHB) granule formation in Azotobacter vinelandii was investigated by laser scanning fluorescence microscopy after staining the cells with Nilered and Baclight. Cells that had been starved for a carbon source for > or =3 days were almost free of PHB granules. Formation of visible PHB granules started within 1-2 h after transfer of the cells to a medium permissive for PHB accumulation. Fluorescent PHB granules at the early stages of formation were exclusively found in the cell periphery of the 2-3 mum ovoid-shaped cells. After 3 h of PHB accumulation or later, PHB granules were also found to be detached from the cell periphery. Our results indicate that PHB granule formation apparently begins at the inner site of the cytoplasmic membrane. This finding is different from previous assumptions that PHB granule formation occurs randomly in the cytoplasm of PHB-accumulating bacteria. 相似文献
17.
Degradation of microbial polyester poly(3-hydroxybutyrate) in environmental samples and in culture 总被引:1,自引:0,他引:1
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)]. 相似文献
18.
Production of poly-D(-)-3-hydroxybutyrate and poly-D(-)-3-hydroxyvalerate by strains ofAlcaligenes latus 总被引:2,自引:0,他引:2
Alcaligenes latus strains can accumulate poly-D(-)-3-hydroxybutyrate (PHB) up to about 85% of cell dry weight. The abilities to store poly-D(-)-3-hydroxyvalerate (PHV) of three strains ofA. latus were investigated. With Na-propionate as PHV precursor, strainA. latusDSM 1122 had better PHV accumulation ability than strainsA. latusDSM 1123 and 1124. StrainA. latus DSM 1123 could store PHV when Na-valerate but not Na-propionate served as the PHV precursor. PHB and PHV accumulation byA. latus DSM 1124 rapidly increased when propionic acid and acetic acid were together added to the fermentor. This increase was not obtained in the culture shaker flask and fermentor growing the same strain when Na-propionate alone served as a PHV precursor. 相似文献
19.
Production of poly(3-hydroxybutyrate) [P(3HB)] from wheyby fed-batch culture of recombinant Escherichia coli CGSC 4401 harboring a plasmid containing the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes was examined in a 30 l fermenter supplying air only. With lactose below 2 g l–1, cells grew to 12 g dry cell l–1 with 9% (w/w) P(3HB) content. Accumulation of P(3HB) could be triggered by increasing lactose to 20 g l–1. By employing this strategy, 51 g dry cell l–1 was obtained with a 70% (w/w) P(3HB) content after 26 h. The productivity was 1.35 g P(3HB) l–1 h–1. The same fermentation strategy was used in a 300 l fermenter, and 30 g dry cell l–1 with 67% (w/w) P(3HB) content was obtained in 20 h. 相似文献
20.
Byoung-In Sang Won-Kwon Lee Katsutoshi Hori Hajime Unno 《World journal of microbiology & biotechnology》2006,22(1):51-57
Summary Poly(3-hydroxybutyrate) [P(3HB)] depolymerase was purified from a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]-degrading fungus, Paecilomyces lilacinus F4-5 by hydrophobic and ion exchange column chromatography, and showed a molecular mass of 45 kDa. The optimum temperature
and pH of the P(3HB) depolymerase were 50 °C and 7.0, respectively. The enzyme was stable for at least 30 min at temperatures
below 40 °C, while the activity abruptly decreased over 55 °C. Enzymatic P(3HB-co-3HV) degradation showed a similar degradation pattern to that of film overlaid by fungal hyphae. It reflects that the fungal
degradation of P(3HB-co-3HV) in soil is mainly caused by extracellular depolymerases. 相似文献