共查询到20条相似文献,搜索用时 15 毫秒
1.
A. De Marco A. M. Petros R. A. Laursen M. Llinás 《European biophysics journal : EBJ》1987,14(6):359-368
The interaction of the isolated human plasminogen kringle 4 with the four -amino acid ligands -aminocaproic acid (ACA), N-acetyl-l-lysine (AcLys), trans-aminomethyl(cyclohexane)carboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA) has been further characterized by 1H-NMR spectroscopy at 300 and 600 MHz. Pronounced high-field shifts, reaching 3 ppm, are observed for AMCHA resonances upon binding to kringle 4, which underscores the relevance of ligand lipophilic interactions with aromatic side chains at the binding site. Ligand titration curves for the nine His and Trp singlets found in the kringle 4 aromatic spectrum reveal a striking uniformity in the kringle response to the various ligands. The average binding curves exhibit a clear Langmuir absorption isotherm saturation profile and the data were analyzed under the assumption of one (high affinity) binding site per kringle. Equilibrium association constants (K
a
) and first order dissociation rate constants (k
off) were derived from linearized expressions of the Langmuir isotherm and of the spectral line-shapes, respectively. The results for the four ligands, at 295 K, pH* 7.2, indicate that: (a) AMCHA exhibits the strongest binding (K
a
=159 mM
-1) and ACA the weakest (K
a
=21 mM
–1) with AcLys and BASA falling in between; (b) ACA dissociates readily (k
off = 5.3 × 103 s–1) and AMCHA associates the fastest (k
off = 2.0 × 108
M
–1 s–1) while the kinetics for BASA exchange is relatively slow (k
off = 0.8 × 103 s–1, k
on = 0.6 × 108
M
–1s–1); (c) the ligand-binding kinetics is close to diffussion-controlled.Abbreviations ACA
-aminocaproic acid
- AcLys
N-acetyl-l-lysine
- AMCHA
t-aminomethyl(cyclohexane)carboxylic acid
- BASA
p-benzylaminesulfonic acid
- K4
kringle 4
- NOE
nuclear Overhauser effect
- ppm
parts-per-million
- pH*
glass electrode pH reading uncorrected for deuterium isotope effects
-
K
a
ligand-kringle 4 equilibrium association constant
-
k
off
ligand-kringle 4 dissociation rate constant
-
k
on
ligand-kringle 4 association rate constant 相似文献
2.
3.
Structural/functional properties of the Glu1-HSer57 N-terminal fragment of human plasminogen: conformational characterization and interaction with kringle domains. 下载免费PDF全文
S. S. An D. N. Marti C. Carreo F. Albericio J. Schaller M. Llinas 《Protein science : a publication of the Protein Society》1998,7(9):1947-1959
The Glu1-Val79 N-terminal peptide (NTP) domain of human plasminogen (Pgn) is followed by a tandem array of five kringle (K) structures of approximately 9 kDa each. K1, K2, K4, and K5 contain each a lysine-binding site (LBS). Pgn was cleaved with CNBr and the Glul-HSer57 N-terminal fragment (CB-NTP) isolated. In addition, the Ile27-Ile56 peptide (L-NTP) that spans the doubly S-S bridged loop segment of NTP was synthesized. Pgn kringles were generated either by proteolytic fragmentation of Pgn (K4, K5) or via recombinant gene expression (rK1, rK2, and rK3). Interactions of CB-NTP with each of the Pgn kringles were monitored by 1H-NMR at 500 MHz and values for the equilibrium association constants (Ka) determined: rK1, Ka approximately 4.6 mM(-1); rK2, Ka approximately 3.3 mM(-1); K4, Ka approximately 6.2 mM-'; K5, K, 2.3 mM(-1). Thus, the lysine-binding kringles interact with CB-NTP more strongly than with Nalpha-acetyl-L-lysine methyl ester (Ka < 0.6 mM(-l), which reveals specificity for the NTP. In contrast, CB-NTP does not measurably interact with rK3. which is devoid of a LBS. CB-NTP and L-NTP 1H-NMR spectra were assigned and interproton distances estimated from 1H-1H Overhauser (NOESY) experiments. Structures of L-NTP and the Glul-Ile27 segment of CB-NTP were computed via restrained dynamic simulated annealing/energy minimization (SA/EM) protocols. Conformational models of CB-NTP were generated by joining the two (sub)structures followed by a round of constrained SA/EM. Helical turns are indicated for segments 6-9, 12-16, 28-30, and 45-48. Within the Cys34-Cys42 loop of L-NTP, the structure of the Glu-Glu-Asp-Glu-Glu39 segment appears to be relatively less defined, as is the case for the stretch containing Lys5O within the Cys42-Cys54 segment, consistent with the latter possibly interacting with kringle domains in intact Glul-Pgn. Overall, the CB-NTP and L-NTP fragments are of low regular secondary structure content-as indicated by UV-CD spectra- and exhibit fast amide 1H-2H exchange in 2H2O, suggestive of high flexibility. 相似文献
4.
The phosphoserine-binding 14-3-3 proteins have been implicated in playing a role in mitogenic and apoptotic signaling pathways. Binding of 14-3-3 proteins to phosphoserine residues in the C-terminus of the insulin-like growth factor-1 receptor (IGF-1R) has been described to occur in a variety of cell systems, but the kinase responsible for this serine phosphorylation has not been identified yet. Here we present evidence that the isolated dimeric insulin-like growth factor-1 receptor kinase domain (IGFKD) contains a dual specific (i.e. tyrosine/serine) kinase activity that mediates autophosphorylation of C-terminal serine residues in the enzyme. From the total phosphate incorporation of approximately 4 mol per mol kinase subunit, 1 mol accounts for serine phosphate. However, tyrosine autophosphorylation proceeds more rapidly than autophosphorylation of serine residues (t(1/2) approximately 1 min vs. t(1/2) approximately 5 min). Moreover, dot-blot and far-Western analyses reveal that serine autophosphorylation of IGFKD is sufficient to promote binding of 14-3-3 proteins in vitro. The proof that dual kinase activity of IGFKD is necessary and sufficient for 14-3-3 binding was obtained with an inactive kinase mutant that was phosphorylated on serine residues in a stoichiometric reaction with the catalytically active enzyme. Thus, the IGF-1R itself might be responsible for the serine autophosphorylation which leads to recognition of 14-3-3 proteins in vivo. 相似文献
5.
Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose 总被引:2,自引:0,他引:2
Harthill JE Meek SE Morrice N Peggie MW Borch J Wong BH Mackintosh C 《The Plant journal : for cell and molecular biology》2006,47(2):211-223
Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1. 相似文献
6.
Lee H Kim HK Lee JH You WK Chung SI Chang SI Park MH Hong YK Joe YA 《Archives of biochemistry and biophysics》2000,375(2):359-363
Kringle 1-3 of human plasminogen is a potent inhibitor of endothelial cell proliferation. To understand a possible role for the unique cystine bridge between kringle 2 and kringle 3, we disrupted the interkringle disulfide bond by mutating Cys(169) and Cys(297) to serine residues. The yield of the mutant during the refolding process was decreased significantly. Anti-endothelial cell proliferative activity of the mutant was similar to that of the wild type. There was no significant difference in in vivo antiangiogenic activity between the wild type and the mutant in chorioallantoic membrane assay. However, in the mutant, the weak lysine binding capability of kringle 2 was not detected and its mobility in nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis is different from that of the wild type. These results support the notion that the overall antiangiogenic function of angiostatin is mediated by individual kringles, and suggest that the lysine binding capability of kringle 2 is likely not important for the antiangiogenic activity of kringle 1-3. 相似文献
7.
Shun Lv Meilin Ma Yunmei Sun Xiangming Wang Naren Qimuge Jin Qin 《Animal cells and systems.》2017,21(4):269-277
MicroRNAs have been regarded to play a crucial role in the proliferation of different cell types including preadipocytes. In our study, we observed that miR-129-5p was down-regulated during 3T3-L1 preadipocyte proliferation, while the expression of G3BP1 showed a contrary tendency. 5-Ethynyl-2′-deoxyuridine (EdU) incorporation assay and flow cytometry showed that overexpression of miR-129-5p could bring about a reduction in S-phase cells and G2-phase arrest. Additional study indicated that miR-129-5p impaired cell cycle-related genes in 3T3-L1 preadipocytes. Importantly, it showed that miR-129-5p directly targeted the 3′ UTR of G3BP1 and the expression of G3BP1 was inhibited by miR-129-5p mimic. Moreover, miR-129-5p mimic activated the p38 signaling pathway through up-regulating p38 and the phosphorylation level of p38. In a word, results in our study revealed that miR-129-5p suppressed preadipocyte proliferation via targeting G3BP1 and activating the p38 signaling pathway. 相似文献
8.
9.
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels. 相似文献
10.
Qinghua Li Zhifang Pan Xuejian Wang Zhiqin Gao Chune Ren Weiwei Yang 《Biochemical and biophysical research communications》2014
Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia. 相似文献
11.
Haihua Gu Tao YangShaozi Fu Xiaofan ChenLei Guo Yiming Ni 《Biochemical and biophysical research communications》2014
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation. 相似文献
12.
目的:构建并鉴定含14-3-3蛋白抑制肽R18的重组腺病毒,为研究14-3-3蛋白的功能提供基础工具。方法:用同源重组方法构建含14-3-3蛋白抑制肽R18的复制缺陷型腺病毒载体(AdR18),并加以鉴定、扩增,以获得高滴度AdR18病毒液,体外感染乳大鼠心肌细胞,检测目的基因表达。结果:将构建的重组腺病毒载体AdR18感染乳大鼠心肌细胞并表达48h后,蛋白印迹结果显示AdR18感染组有明显R18的表达,对照组无表达。结论:腺病毒载体可高效率导入外源基因在心肌细胞中高表达。 相似文献
13.
14.
Amardeep S. Dhillon Yan Yan Yip G. Joan Grindlay Julian L. Pakay Marc Dangers Meike Hillmann William Clark Andrew Pitt Harald Mischak Walter Kolch 《Cellular signalling》2009,21(11):1645-1651
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation. 相似文献
15.
Birkenfeld J Kartmann B Anliker B Ono K Schlötcke B Betz H Roth D 《Biochemical and biophysical research communications》2003,302(3):526-533
14-3-3 proteins are ubiquitously expressed proteins which serve as central adaptors in different signal transduction cascades. In this study, yeast two-hybrid screening of a rat brain cDNA library identified a novel gene product termed zetin 1/rBSPRY that interacts with 14-3-3 zeta. The zetin 1/rBSPRY gene is ubiquitously expressed in a variety of rat tissues, with highest expression being found in testis. In adult brain, high levels of zetin 1/rBSPRY mRNA were observed in the hippocampus, cerebral cortex, and piriform cortex. Biochemical studies confirmed zetin 1/rBSPRY to interact with 14-3-3 zeta. Transient co-transfection in COS 7 cells caused a partial redistribution of zetin 1/rBSPRY into 14-3-3 zeta enriched submembranous foci at leading edges. Our results suggest a role for zetin 1/rBSPRY-14-3-3 interactions at specialized submembrane domains. 相似文献
16.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1. 相似文献
17.
J.G. Supko L.R. Phillips L. Malspeis 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,677(2):351
A facile, sensitive and highly specific HPLC method for assaying 1-(2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) in plasma has been developed. The drug was efficiently isolated from plasma by extraction with tert.-butyl methyl ether. A structurally related compound with similar physicochemical properties served as the internal standard (I.S.). Following evaporation of the organic solvent, the extract was reconstituted with 0.05 M ammonium acetate buffer, pH 5.0, and loaded onto a 4 μm Nova-Pak C18 column (15 cm×3.9 mm), which was preceded by a 7 μm Brownlee RP-18 precolumn (1.5 cm×3.2 mm). Chromatography was performed at ambient temperature using a mobile phase of methanol-0.1 M ammonium formate buffer, pH 3.7 (25:75, v/v). UV absorbance of the effluent was monitored at 240 nm. A flow-rate of 1.0 ml/min was used for analyzing mouse and dog plasma extracts. Under these conditions, the drug eluted at 4.0 min and was followed by the I.S. at 6.1 min. An automatic switching valve was employed to allow the precolumn to be flushed 1.5 min into the run, without interrupting the flow of the mobile phase to the analytical column, thereby preventing the apparent build-up of extractable, strongly retained, UV-absorbing components present in mouse and dog plasma. Operating in this manner, more than 100 samples could be analyzed during a day using a refrigerated autosampler for overnight injection. The method was readily adapted to the determination of SarCNU in human plasma by simply decreasing the eluent flow-rate to 0.6 ml/min, whereby SarCNU and the I.S. eluted at approximately 5.8 and 9.1 min, respectively. Furthermore, the switching valve was not necessary for the analysis of human plasma samples. With a 50-μl sample volume, the lowest concentration of SarCNU included in the plasma standard curves, 0.10 μg/ml, was quantified with a 7.8% R.S.D. (n=27) over a 2 month period. Plasma standards, with concentrations of 0.26 to 5.1 μg/ml, exhibited R.S.D. values ranging from 1.3 to 4.7%. Thermospray-ionization MS detection was used to definitively establish the specificity of the method. The sensitivity of the assay was shown by application to be more than adequate for characterizing the plasma pharmacokinetics of SarCNU in mice. 相似文献
18.
纯化日本血吸虫(中国大陆株)重组信号蛋白(rSj14—3—3),并制备其单克隆抗体。以纯化后的rsj14-3—3蛋白为抗原免疫Balb/c小鼠,用杂交瘤技术制备抗rSj14-3-3的单克隆抗体,并通过ELISA方法和Westernblotting测定抗体的效价与特异性。获得了大量高纯度的rSj14-3-3蛋白:筛选出了能够稳定分泌抗rSj14.3.3单抗的杂交瘤细胞株3H6。单抗亚型为IgG1。实验依靠大肠杆菌表达系统高效表达了rSj14—3—3蛋白,并利用该蛋白制备了单克隆抗体.可用于今后血吸虫病免疫诊断的实验研究。 相似文献
19.
Naijie Liu Guozhang Hu Han Wang Yue Wang Zhigang Guo 《Journal of cellular physiology》2019,234(12):22144-22152
Glioma, an aggressive tumor in brain, presents a very poor prognosis. Emerging evidence has demonstrated that dysfunction of long noncoding RNAs (lncRNAs) is closely related to giloma development. However, the roles of lncRNA BLACAT1 in glioma are not unknown. In this study, we utilized in vitro and in vivo experiments to explore the effects of BLACAT1 on glioma cells. BLACAT1 levels were increased in glioma tissues. Upregulation of BLACAT1 showed poor prognosis. Silencing of BLACAT1 markedly repressed glioma proliferation, migration, and invasion, and suppressed glioma growth in vivo. We also illustrated that BLACAT1 worked as the sponge for miR-605-3p and promoted VASP expression. miR-605-3p was downregulated in glioma and repressed glioma proliferation, migration, and invasion. And VASP is upregulated and contributed to glioma progression. Summarily, this study highlights the important roles of BLACAT1/miR-605-3p/VASP axis in glioma progression. 相似文献
20.
Kim D Won J Shin DW Kang J Kim YJ Choi SY Hwang MK Jeong BW Kim GS Joe CO Chung SH Song WJ 《Biochemical and biophysical research communications》2004,323(2):499-504
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3. 相似文献