首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Allosteric modulation of [3H]strychnine binding to glycine receptors (GlyRs) was examined in synaptosomal membranes of rat spinal cord. An allosteric model enabled us to determine the cooperativity factors of the allosteric agents with [3H]strychnine and glycine bindings (alpha and beta, respectively). We modified the allosteric model with a slope factor because the slope values of the displacement curves of partial agonists (beta-alanine, taurine and gamma-aminobutyric acid) were beyond unity. The slope factor was reduced only by 100 microM propofol. Further, propofol showed positive cooperativity (beta < 1) stronger with taurine than with glycine. The extent of the positive cooperativity of propofol was nearly independent from the potencies and structures of partial agonists. The steroidal alphaxalone and minaxolone also potentiated taurine better than glycine. Alphaxalone exerted weak negative cooperativity with [3H]strychnine binding. Displacement by taurine is attenuated by granisetron and m-chlorophenylbiguanide representing negative cooperativity (beta > 1) greater than with glycine. The results suggest a developmental role of elevated perinatal levels of taurine and neurosteroids as well as a better allosteric modulation of decreased agonist efficacies for impaired glycine receptor-ionophores.  相似文献   

2.
Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs.  相似文献   

3.
Photoaffinity-labelling of the glycine receptor of rat spinal cord   总被引:10,自引:0,他引:10  
The irreversible incorporation upon ultraviolet illumination of the glycine receptor antagonist, [3H]strychnine, into synaptic membrane fractions of rat spinal cord has been investigated. The specificity of this photoaffinity-labelling reaction for the glycine receptor was demonstrated by the following results: (a) the Kd value (9.7 nM) of the glycine-displaceable irreversible incorporation of [3H]strychnine was similar to the previously reported Kd of [3H]strychnine binding to the glycine receptor; (b) pre-illumination of the membranes with unlabelled strychnine led to a corresponding reduction in the number, but not the affinity, of reversible glycine-displaceable [3H]strychnine binding sites; (c) the ultraviolet light-induced incorporation into the membranes of [3H]strychnine was inhibited by different glycine receptor agonists; other neurotransmitter substances had little or no effect. Also, [3H]strychnine alone was shown to be stable upon illumination with ultraviolet light; this suggests that photocrosslinking of [3H]strychnine may require energy transfer from specific groups of its high-affinity receptor binding site. Upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis a single labelled polypeptide with a relative molecular mass of 48000 was revealed from spinal cord membranes photoaffinity-labelled with [3H]strychnine. Spinal cord membranes photoaffinity-labelled with the gamma-aminobutyric acid receptor ligand [3H]flunitrazepam, however, gave a single polypeptide with a relative molecular mass of 5- 0000. Treatment of membranes, labelled with [3H]strychnine, by endoglycosidase H did not alter the relative molecular mass of the 48000-Mr labelled polypeptide. Trypsin treatment, on the other hand, successively produced major fragments of relative molecular masses of 42000 and 37000. Also, even after extensive treatment with trypsin or chymotrypsin, greater than or equal to 90% of the radioactivity incorporated into the labelled membranes remained membrane-associated. It is concluded that the strychnine binding site of the glycine receptor is located on a protease-inaccessible, i.e. probably hydrophobic domain of the 48000-Mr subunit.  相似文献   

4.
Binding to gamma-aminobutyric acid-A (GABAA) receptors was studied in synaptosomal membranes of rat brain. Dissociation of [3H]muscimol and the GABAA antagonist [3H]2-(3-carboxypropyl)-3-amino-6-p-methoxyphenylpyridazinium bromide ([3H]SR 95531) binding elicited by 100-fold dilution was accelerated by excess of GABA or SR 95531. Control dissociation might be retarded by rebinding. The contribution of a rapid first phase of dissociation of the agonist [3H]muscimol was preferentially enhanced by SR 95531. In contrast, the dissociation of [3H]SR 95531 binding was preferentially accelerated by GABA. These opposite preferential accelerations can be explained by negative heterotropic cooperativity and a reversed affinity relationship of agonists and antagonists to GABAA binding sites with different affinities. Modification of the membranes by p-diazobenzenesulfonic acid (DSA) selectively decreased the accelerating effect of GABA on the dissociation of [3H]SR 95531 binding. [3H]Strychnine binding was studied in a membrane preparation of rat spinal cord. The dissociation of the antagonist [3H]strychnine elicited by dilution was preferentially accelerated by glycine. Again, pretreatment with DSA decreased selectively this negative heterotropic (i.e., allosteric) interaction. Chemical modification by DSA might be attributed to tyrosine residues responsible for similar allosteric interactions for the GABA- and glycine-gated chloride channels.  相似文献   

5.
[3H]Strychnine binding to rat pons + medulla membranes was used as a measure of glycine receptors or glycine receptor-coupled chloride channels in vitro. A series of compounds structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), which previously were shown to antagonize glycine responses in cat spinal cord, inhibited [3H]strychnine binding in micromolar concentrations. The most potent of these glycine antagonists, 5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol (iso-THAZ), was also the most potent inhibitor of [3H]strychnine binding, with a Ki of 1,400 nM. The Ki value for strychnine was 7.0 nM, whereas the Ki value for the mixed gamma-aminobutyric acid (GABA)/glycine antagonist 3 alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (RU 5135) was only 4.6 nM. Sodium chloride (1,000 mM) enhanced the affinity of strychnine, brucine, isostrychnine, and the nonselective GABA antagonist pitrazepin for [3H]strychnine binding sites, whereas the affinities of glycine, beta-alanine, and taurine were reduced. These sodium chloride shifts, however, were not predictive of antagonist or agonist properties, since the sodium chloride shift for the glycine antagonist iso-THAZ and of the other THIP-related antagonists were similar to those of the glycine-like agonists. The various sodium chloride shifts show that different groups of ligands bind to glycine receptor sites in different ways.  相似文献   

6.
The thermodynamic parameters associated with the interactions of agonists and antagonists with glycine receptors in rat spinal cord membranes were determined. The binding of the antagonist [3H]strychnine and the inhibition of strychnine binding by 11 different glycinergic ligands were examined at temperatures between 0.5 and 37 degrees C. The density of receptors was not affected by the temperature at which the incubation was performed, but the ability of glycine receptor agonists and antagonists to compete with [3H]strychnine binding varied markedly. The affinity of the receptor for the antagonists strychnine, 2-aminostrychnine, RU-5135, 5,6,7,8-tetrahydro-4H-isoxazolo[5,4-c]azepin-3-ol, and the ligands bicuculline, norharmane, and PK-8165 decreased at higher temperatures. The binding of these ligands was enthalpy-driven. In contrast, the affinity of the agonists glycine, beta-alanine, and taurine and of the antihelmintic ivermectin increased at higher temperatures, and their binding was characterized by substantial increases in entropy. In addition, temperature affected the allosteric interaction between the glycine and strychnine sites of the receptor, as indicated by changes in the Hill number of the competition curves for glycine. Our results clearly indicate that the binding of agonists and antagonists to the glycine receptor is differentially affected by temperature, probably as a consequence of the different changes induced in the receptor conformation.  相似文献   

7.
Amino acid residues that participate in antagonist binding to the strychnine-sensitive glycine receptor (GlyR) have been identified by selectively modifying functional groups with chemical reagents. Moreover, a region directly involved with strychnine binding has been localized in the 48-kDa subunit of this receptor by covalent labeling and proteolytic mapping. Modification of tyrosyl or arginyl residues promotes a marked decrease of specific [3H]strychnine binding either to rat spinal cord plasma membranes or to the purified GlyR incorporated into phospholipid vesicles. Occupancy of the receptor by strychnine, but not by glycine, completely protects from the inhibition caused by chemical reagents. Furthermore, these tyrosine- or arginine-specific reagents decrease the number of binding sites (Bmax) for [3H]strychnine binding without affecting the affinity for the ligand (Kd). These observations strongly suggest that such residues are present at, or very close to, the antagonist binding site. In order to localize the strychnine binding domain within the GlyR, purified and reconstituted receptor preparations were photoaffinity labeled with [3H]strychnine. The radiolabeled 48-kDa subunit was then digested with specific chemical proteolytic reagents, and the peptides containing the covalently bound radioligand were identified by fluorography after gel electrophoresis. N-Chlorosuccinimide treatment of [3H]strychnine-labeled 48K polypeptide yielded a single labeled peptide of Mr approximately 7300, and cyanogen bromide gave a labeled peptide of Mr 6200.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

9.
Purification and characterization of the glycine receptor of pig spinal cord   总被引:13,自引:0,他引:13  
A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10 000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48 000, 58 000, and 93 000. Photoaffinity labeling with [3H]strychnine showed that the [3H]strychnine binding site is associated with the Mr 48 000 and, to a much lesser extent, the Mr 58 000 polypeptides. [3H]Strychnine binding to the purified receptor exhibited a dissociation constant KD of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the [3H]strychnine-labeled Mr 48 000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.  相似文献   

10.
The receptor-ionophore complex of the N-methyl-D-aspartate (NMDA)-sensitive receptor was solubilized by deoxycholic acid from rat brain using (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801) binding as a marker for the receptor. Gel filtration of the solubilized preparations on a Sephadex G-25 column revealed significant [3H]MK-801 binding sensitive to potentiation by glutamate and glutamate/glycine, which was prevented by competitive antagonists for the NMDA and strychnine-insensitive glycine (GlyB) sites. In contrast to NMDA and glycine, spermidine markedly potentiated the amount of [3H]MK-801 binding in solubilized preparations by increasing the apparent affinity of the ligand. In the presence of all three stimulants, the solubilized preparations exhibited pharmacological profiles similar to those in the membrane preparations. These results clearly indicate that the whole macromolecular NMDA receptor-ionophore complex is solubilized under the experimental conditions used.  相似文献   

11.
The glycine receptor of rat spinal cord was solubilized with the nonionic detergent Triton X-100 and subsequently purified by affinity chromatography on aminostrychnine-agarose and wheat germ agglutinin-Sepharose. An overall purification of 1950-fold was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and mercaptoethanol revealed three glycine receptor-associated polypeptides of Mr = 48,000, 58,000, and 93,000. [3H]Strychnine was incorporated irreversibly into the Mr = 48,000 polypeptide upon UV-illumination. The dissociation constant (KD) of [3H]strychnine binding to the purified glycine receptor was 9.3 +/- 0.6 nM. The glycine receptor agonists glycine, beta-alanine, and taurine inhibited the binding of [3H]strychnine to the purified receptor. Gel filtration and sedimentation in sucrose/H2O and sucrose/D2O gradients gave a Stokes radius of 7.7 nm, a partial specific volume of 0.780 +/- 0.005 ml/g and a sedimentation coefficient s20,w of 8.2 +/- 0.2 S for the purified glycine receptor. From these data, a molecular weight of 246,000 +/- 6,000 was calculated for the glycine receptor protein.  相似文献   

12.
Synaptosomal fractions were isolated from frog retina: a fraction enriched in photoreceptor terminals (P1) and a second one (P2) containing interneurons terminals. We compared the binding of [3H]glycine and [3H]strychine to membranes of these synaptosomes. The binding of both radioactive ligands was saturable and Na+-independent. [3H]Glycine bound to a single site in P1 and P2 synaptosomal fractions, with KD=12 and 82 nM and BMax=3.1 and 3.06 pmol/mg protein respectively. [3H]Strychnine bound to two sites in each one of the synaptosomal fractions. For P1 KD values were 3.9 and 18.7 nM, and BMax values were 1.1 and 7.1 pmol/mg protein, respecitively. Membranes from the P2 synaptosomal fraction showed KD's of 0.6 and 48 nM and BMax's of 0.4 and 4.5 pmol/mg. Specific [3H]glycine binding was displaced by -alanine, l-serine, d-serine and HA966, but not by strychnine 7-chlorokynurenic or 5,7-dichloro-kynurenic acids. Specific [3H]strychnine, binding was partially displaced by glycine and related aminoacids and totally displaced only by 2-NH2-strychnine. Our results indicate the presence of high affinity binding sites for glycine and strychnine in frog retinal synaptosomal membranes. The pharmacological binding pattern indicates the presence of the strychnine sensitive glycine receptor as well as other sites. These might not include the NMDA receptor-associated glycine site.  相似文献   

13.
Polyclonal antibodies have been raised in rabbits against the glycine receptor antagonist strychnine, coupled through a 2-amino substituent to the antigenic protein key-hole limpet haemocyanin. Strychnine binding of the predominantly immunoglobulin G (IgG) class of antibodies was measured by incubation with [3H]strychnine, followed by adsorption of IgG onto Staphylococcus aureus cells and filtration through glass-fibre filters under vacuum. Only strychnine and structurally related alkaloids or derivatives were able to inhibit [3H]strychnine binding to the IgG. A significant rank correlation was found between the potencies of these compounds to inhibit [3H]strychnine binding to the antibodies and to the glycine receptor in mouse spinal cord membranes. In contrast, preincubation of strychnine antibodies with a variety of ligands at other neurotransmitter, drug, or hormone receptors in the CNS (at 10(-4) M) failed to inhibit binding significantly. The failure of glycine to inhibit strychnine antibody binding is consistent with previous suggestions that the recognition sites for this amino acid on the CNS receptor may be conformationally distinct from those for the antagonist alkaloid. Strychnine antibodies may now help in the identification and purification of possible endogenous ligands at this alkaloid binding site in the CNS.  相似文献   

14.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

15.
Allosteric enhancement of the affinity of muscarinic receptors for their ligands offers a new way to influence cholinergic neurotransmission. The structure of the allosteric binding domain(s) and the features of agonists, antagonists and modulators which determine the occurrence of either positive or negative cooperativity require clarification. We tested interactions between allosteric modulators alcuronium, strychnine and brucine and eight antagonists at muscarinic receptors expressed in CHO cells. In experiments with unlabeled antagonists, all three modulators enhanced the affinity for 4-diphenylacetoxy-N-dimethylpiperidinium (4-DAMP) at the M2 receptors, and strychnine did so also at the M4 receptors. Positive interactions were also observed between alcuronium and L-hyoscyamine (M2) and scopolamine (M2), between strychnine and butylscopolamine (M4), L-hyoscyamine (M2 and M4) and scopolamine (M4), and between brucine and scopolamine (M2). Positive effects of alcuronium, strychnine and brucine on the affinity of the M2 receptors for 4-DAMP have been confirmed by direct measurements of the binding of [3H]-4-DAMP. A comparison of molecular models of several antagonists which are esters revealed that antagonists in which the distance between the N and the carboxyl C atoms corresponds to five chemical bonds are more likely to display positive cooperativity with alcuronium at the M2 receptors than the antagonists in which the N-carboxyl C distance corresponds to four chemical bonds.  相似文献   

16.
The presence of an uptake system and a functional glycine receptor in adrenal medulla chromaffin cells was investigated using an autoradiographic technique in adrenal gland slices. Specific3[H]-glycine binding was observed in both adrenal cortex and medulla slices, while only specific binding of [3H]strychnine was seen only in chromaffin cells and was not associated with cortical cells. [3H]Glycine binding sites in the cortex are apparently different from those of [3H]strychnine binding sites in the medulla since excess strychnine does not displace [3H]glycine from adrenal cortex but does so from medulla. This difference supports biochemical evidence for glycine transport into medulla cells and glycine receptor sites on the chromaffin cell membrane.  相似文献   

17.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

18.
Heteroaromatic carboxylic esters of (nor)tropine were synthesized. Tropine esters displaced [3H]strychnine binding to glycine receptors of rat spinal cord with low Hill slopes. Two-site displacement resulted in nanomolar IC50,1 and micromolar IC50,2 values, and IC50,2/IC50,1 ratios up to 615 depending on the heteroaromatic rings and N-methyl substitution. Nortropeines displayed high affinity and low heterogeneity. IC50,1 and IC50,2 values of tropeines did not correlate suggesting different binding modes/sites. Glycine potentiated only the nanomolar displacement reflecting positive allosteric interactions and potentiation of ionophore function. Affinities of three (nor)tropeines were different for glycine receptors but identical for 5-HT3 receptors.  相似文献   

19.
Cultured human cells were transfected with cloned rat glycine receptor (GlyR) 48 kd subunit cDNA. In these cells glycine elicited large chloride currents (up to 1.5 nA), which were blocked by nanomolar concentrations of strychnine. However, no corresponding high-affinity binding of [3H]strychnine was detected in membrane preparations of the transfected cells. Analysis by monoclonal antibodies specific for the 48 kd subunit revealed high expression levels of this membrane protein. After solubilization, the 48 kd subunit behaved as a macromolecular complex when analyzed by sucrose density centrifugation. Approximately 50% of the solubilized complex bound specifically to a 2-aminostrychnine affinity column, indicating the existence of low-affinity antagonist binding sites on most of the expressed GlyR protein. Thus, the 48 kd strychnine binding subunit efficiently assembles into high molecular weight complexes, resembling the native spinal cord GlyR. However, formation of functional receptor channels of high affinity for strychnine occurs with low efficiency.  相似文献   

20.
In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号