首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel constrained l-AP4 analogues, (2S,1'R,2'S)- and (2S,1'S,2'R)-2-(2'-phosphonocyclopropyl)glycines (7) and (8), were synthesized and evaluated as mGluR ligands. Compound 7 showed to be a group III mGluRs agonist with micromolar activity.  相似文献   

2.
We report herein the synthesis of the tritium labeled isotopomer of 1 and its use as a radioligand to label mGlu8 receptors in rat forebrain membranes as well as cloned human recombinant mGlu receptors. [(3)H]-1 was synthesized by the NaBT(4) reduction of an activated analog of 5. [(3)H]-1 bound appreciably to recombinant human mGlu2, mGlu3 and mGlu8 receptors and to rat forebrain membranes and was displaced by L-glutamate and L-(+)-2 amino-4-phosphonobutyric acid. The results indicate that [(3)H]-1 should be a useful ligand for the study of mGluR2, 3, and 8 receptors in cloned cell lines and possibly brain tissue.  相似文献   

3.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

4.
The ceramide sex pheromone [(2S,2'R,3S,4R)-2-(2'-hydroxy-21-methyldocosanoylamino)-1,3,4-pentadecanetriol (1)] of the female hair crab (Erimacrus isenbeckii) was synthesized by starting from (S)-serine and 12-bromo-1-dodecanol.  相似文献   

5.
The interaction of D-glucuronic and D-gluconic acids with cis- and trans-PtCl2(NH3)2 (cisplatin and transplatin) has been investigated in aqueous solution and solid complexes of the type cis-[PtL(NH3)2]L.H2O and trans-[PtL2(NH3)2]L.H2O, where L = D-glucuronate or D-gluconate anions, are isolated and characterized by means of Fourier transform-infrared and 1H-NMR spectroscopy, and molar conductivity and X-ray powder diffraction measurements. Spectroscopic and other evidence indicated that the sugar anions bind monodentately in trans-[PtL2(NH3)2].H2O and bidentately in cis-[PtL(NH3)2]L.H2O complexes through the carboxylate oxygen atoms and other sugar donor groups. The strong sugar intermolecular hydrogen-bonding network is altered to that of the sugar-OH...NH3(H2O)...OH-sugar, upon platinum-ammine interaction. The D-glucuronate anion has the beta-anomer configuration both in the free salt and in these platinum-sugar complexes.  相似文献   

6.
Six 3-substituted 3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone derivatives (3-8) were synthesized from 3-methyl DCK (2). 3-Hydroxymethyl DCK (6) exhibited potent anti-HIV activity in H9 lymphocytes with EC(50) and TI values of 1.87 x 10(-4) microM and 1.89 x 10(5), respectively. These values are similar to those of DCK and better than those of AZT in the same assay.  相似文献   

7.
Anatoxin-a(s) is a guanidine methyl phosphate ester (unprotonated molecular ion equals 252 daltons) isolated from the freshwater cyanobac-terium (blue-green alga) Anabaena flos-aquae strain NRC 525–17. Previous work has shown anatoxin-a(s) to be a potent irreversible inhibitor of electric eel ace-tylcholinesterase (EC 3.1.1.7, AChE). In the present study the interaction of anatoxin-a(s) with AChE was investigated by protection studies and since similarities have been noted between anatoxin-a(s) and the synthetic organophosphate anticholinesterases, the ability of reactivators to reactivate the inhibited enzyme was investigated. Treatments directed toward eliminating poisoning symptoms and in vivo protection from anatoxin-a(s) poisonings were investigated using oxime reactivators and atropine or pretreatment with a carbamate and atropine. Anatoxin-a(s) was shown to be an active site-directed inhibitor of acetyl-cholinesterase which is resistant to oxime reactivation due to the structure of its enzyme adduct. In vivo pretreatment with physostigmine and high concentrations of 2-PAM were the only effective antagonists against a lethal dose of anatoxin-a(s).  相似文献   

8.
(2S,1'S,2'R)-2-(Carboxycyclopropyl)glycine (L-CCG III) was a substrate of Na+-dependent glutamate transporters (GluT) in Xenopus laevis oocytes (IC50 13 and 2 M for, respectively, EAAT 1 and EAAT 2) and caused an apparent inhibition of [3H]L-glutamate uptake in mini-slices of guinea pig cerebral cortex (IC50 12 M). In slices (350 M) of guinea pig cerebral cortex, 5 M L-CCG III increased both the flux of label through pyruvate carboxylase and the fractional enrichment of glutamate, GABA, glutamine and lactate, but had no effect on total metabolite pool sizes. At 50 M L-CCG III decreased incorporation of 13C from [3-13C]-pyruvate into glutamate C4, glutamine C4, lactate C3 and alanine C3. The total metabolite pool sizes were also decreased with no change in the fractional enrichment. Furthermore, L-CCG III was accumulated in the tissue, probably via GluT. At lower concentration, L-CCG III would compete with L-glutamate for GluT and the changes probably reflect a compensation for the missing L-glutamate. At 50 M, intracellular L-CCG III could reach > 10 mM and metabolism might be affected directly.  相似文献   

9.
10.
The syntheses of an isomer of kotalanol, a naturally occurring glucosidase inhibitor, and of kotalanol itself are described. The target compounds were synthesized by nucleophilic attack of PMB-protected 1,4-anhydro-4-thio-d-arabinitol at the least hindered carbon atom of two 1,3-cyclic sulfates, which were synthesized from d-mannose. Methoxymethyl ether and isopropylidene were chosen as protecting groups. The latter group was critical to ensure the facile deprotection of the coupled products in a one-step sequence to yield kotalanol and its isomer. The stereoisomer of kotalanol, with the opposite stereochemistry at the C-6′ stereogenic centre, inhibited the N-terminal catalytic domain of intestinal human maltase glucoamylase (ntMGAM) with a Ki value of 0.20 ± 0.02 μM; this compares to a Ki value for kotalanol of 0.19 ± 0.03 μM. The results indicate that the configuration at C-6′ is inconsequential for inhibitory activity against this enzyme.  相似文献   

11.
12.

Background and Aims

There is a great need to search for natural compounds with superior prebiotic, antioxidant and immunostimulatory properties for use in (food) applications. Raffinose family oligosaccharides (RFOs) show such properties. Moreover, they contribute to stress tolerance in plants, acting as putative membrane stabilizers, antioxidants and signalling agents.

Methods

A large-scale soluble carbohydrate screening was performed within the plant kingdom. An unknown compound accumulated to a high extent in early-spring red deadnettle (Lamium purpureum) but not in other RFO plants. The compound was purified and its structure was unravelled with NMR. Organs and organ parts of red deadnettle were carefully dissected and analysed for soluble sugars. Phloem sap content was analysed by a common EDTA-based method.

Key Results

Early-spring red deadnettle stems and roots accumulate high concentrations of the reducing trisaccharide manninotriose (Galα1,6Galα1,6Glc), a derivative of the non-reducing RFO stachyose (Galα1,6Galα1,6Glcα1,2βFru). Detailed soluble carbohydrate analyses on dissected stem and leaf sections, together with phloem sap analyses, strongly suggest that stachyose is the main transport compound, but extensive hydrolysis of stachyose to manninotriose seems to occur along the transport path. Based on the specificities of the observed carbohydrate dynamics, the putative physiological roles of manninotriose in red deadnettle are discussed.

Conclusions

It is demonstrated for the first time that manninotriose is a novel and important player in the RFO metabolism of red dead deadnettle. It is proposed that manninotriose represents a temporary storage carbohydrate in early-spring deadnettle, at the same time perhaps functioning as a membrane protector and/or as an antioxidant in the vicinity of membranes, as recently suggested for other RFOs and fructans. This novel finding urges further research on this peculiar carbohydrate on a broader array of RFO accumulators.  相似文献   

13.
Wang YS  Youngster S  Bausch J  Zhang R  McNemar C  Wyss DF 《Biochemistry》2000,39(35):10634-10640
Interferons display a wide range of antiviral, antiproliferative, and immunomodulatory activities on a variety of cell types and have been used to treat many diseases including hairy-cell leukemia and hepatitis B and C and have also been applied to other therapeutic areas. To improve the pharmacological properties of interferon (IFN) alpha-2b, a long-acting pegylated form (PEG-IFN) has been developed [PEG, monomethoxy poly(ethylene glycol) with average molecular mass of 12 000 Da]. PEG-IFN is a mixture of pegylated proteins with differing sites of PEG attachment. To identify the major positional isomer in the pegylated material [PEG-IFN(His-34)], NMR studies were conducted on a subtilisin-digested N-acetylated peptide of the major positional isomer [PEG-IFN(His-34)dig], synthetic peptide analogues containing His-34, as well as unmodified IFN and PEG-IFN(His-34). Our studies reveal a novel interferon-polymer attachment site as a histidine-linked interferon conjugate. We show that the major component of PEG-IFN is pegylated in the imidazole side chain of histidine-34. Chemical shift data suggest that pegylation occurs mainly at the N(delta)(1) position in the imidazole side chain of this residue. This positional isomer, PEG-IFN(His-34), comprises approximately 47% of the total pegylated species when PEG-IFN is synthesized under the current experimental conditions at pH 6.5 with an electrophilic derivative of PEG, succinimidyl carbonate PEG. The reversibility of the histidine modification was examined. The PEG-imidazole adduct in the intact protein, PEG-IFN(His-34), is labile but much more stable than in the peptide, PEG-IFN(His-34)dig. Apparently, the tertiary structure of the intact protein protects the His(34)-imidazole ring from depegylation.  相似文献   

14.
Syntheses of specified 2'-modified nucleosides were achieved: a) via oximation of the 5',3'-blocked 2'-oxocytidine, followed by reduction, or b) by intramolecular nucleophilic addition of 3'-(2-methoxyethoxy)carbamate to the 2'-position with opening of O(2),2'-anhydrouridine. For the first time, 3'-phosphoroamidites of these 2'-modified nucleosides were successfully incorporated into oligonucleotides by solid-phase synthesis. Incorporation of 2'-modified nucleotides into oligodeoxyribonucleotides had a negative effect on the duplex T(m) values with the DNA or RNA complements. Nevertheless, modified nucleotides have shown good target recognition; the (S)-isomer binds preferably to RNA and the (R)-isomer to DNA. Both modified nucleosides significantly increased nuclease resistance of the oligodeoxyribonucleotides.  相似文献   

15.
16.
17.
We report the synthesis and biological activity of a series of side-chain-constrained RGD peptides containing the (2S,3R) or (2S,3S) beta-methyl aspartic acid within the RGD sequence. These compounds have been assayed for binding to the integrin receptors alpha(IIb)beta3 and alpha(v)beta3 and the results demonstrate the importance of the side-chain orientation of this particular residue within the RGD sequence. Based on our findings, the (2S,3S) beta-methylated analogues of our RGD sequences maintain their binding potency to the integrin receptors while the (2S,3R) beta-methylated analogues exhibit a drastically reduced binding affinity. Our studies demonstrate that the three-dimensional orientation of the aspartyl side chain is a very important parameter for integrin binding and that small changes that affect the side-chain orientations give rise to drastic changes in binding affinity. These results provide important information for the design of more potent RGD mimetics.  相似文献   

18.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

19.
Hydrolysis of triglycerides is central to energy homeostasis in white adipose tissue (WAT). Hormone-sensitive lipase (HSL) was previously felt to mediate all lipolysis in WAT. Surprisingly, HSL-deficient mice show active HSL-independent lipolysis, suggesting that other lipase(s) also mediate triglyceride hydrolysis. To clarify this, we used functional proteomics to detect non-HSL lipase(s) in mouse WAT. After cell fractionation of intraabdominal WAT, most non-HSL neutral lipase activity is localized in the 100,000 x g infranatant and fat cake fractions. By oleic acid-linked agarose chromatography of infranatant followed by elution in a 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid gradient, we identified two peaks of esterase activity using p-nitrophenyl butyrate as a substrate. One of the peaks contained most of the lipase activity. In the corresponding fractions, gel permeation chromatography and SDS-PAGE, followed by tandem mass spectrometric analysis of excised Coomassie Blue-stained peptides, revealed carboxylesterase 3 (triacylglycerol hydrolase (TGH); EC 3.1.1.1). TGH is also the principle lipase of WAT fat cake extracts. Partially purified WAT TGH had lipase activity as well as lesser but detectable neutral cholesteryl ester hydrolase activity. Western blotting of subcellular fractions of WAT and confocal microscopy of fibroblasts following in vitro adipocytic differentiation are consistent with a distribution of TGH to endoplasmic reticulum, cytosol, and the lipid droplet. TGH is responsible for a major part of non-HSL lipase activity in WAT in vitro and may mediate some or all HSL-independent lipolysis in adipocytes.  相似文献   

20.
The pharmacokinetic profile of S(-)-hydroxyhexamide (S-HH), a pharmacologically active metabolite of acetohexamide, was examined in male and female rats. S-HH was eliminated more rapidly from plasma in the males than in the females. A significant sex difference was observed in the pharmacokinetic parameters of S-HH in rats. Testectomy caused significant alteration in these parameters of S-HH in male rats, whereas ovariectomy did not in the females. The co-administration of sulfamethazine significantly decreased the plasma clearance (CL(p)) of S-HH in male rats, but had no effect in the females. The plasma concentrations of acetohexamide generated from S-HH showed no sex-related difference. Furthermore, there was no difference in the accumulation of S-HH by renal cortical slices from male and female rats. We propose the possibility that the sex-dependent pharmacokinetics of S-HH in rats is mediated through the male-specific hydroxylation of the cyclohexyl ring catalyzed by a major cytochrome p450 (CYP) isoform (CYP2C11), although the detailed mechanism remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号