首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

2.
The biogenesis of the proton pump V-ATPase commences with the assembly of the proton pore sector V0 in the endoplasmic reticulum (ER). This process occurs under the control of a group of assembly factors whose mutations have recently been shown to cause glycosylation disorders with overlapping phenotypes in humans. Using whole exome sequencing, we demonstrate that mutations of the accessory V-ATPase subunit ATP6AP2 cause a similar disease characterized by hepatosteatosis, lipid abnormalities, immunodeficiency and cognitive impairment. ATP6AP2 interacts with members of the V0 assembly complex, and its ER localization is crucial for V-ATPase activity. Moreover, ATP6AP2 mutations can cause developmental defects and steatotic phenotypes when introduced into Drosophila. Altogether, our data suggest that these phenotypes are the result of a pathogenetic cascade that includes impaired V-ATPase assembly, defective lysosomal acidification, reduced MTOR signaling and autophagic misregulation.  相似文献   

3.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and -2, respectively) play a critical role in regulating cell division and have been implicated in cancer. In addition to activation by MAPK/ERK kinases 1 and 2 (MEK1 and -2, respectively), certain mutants of ERK2 can be activated by autophosphorylation. To identify the mechanism of autoactivation, we have performed a series of molecular dynamics simulations of ERK1 and -2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P, and R65S ERK2 mutants. Our simulations indicate the importance of domain closure for autoactivation and activity regulation, with that event occurring prior to folding of the activation lip and of loop L16. Results indicate that the second phosphorylation event, that of T183, disrupts hydrogen bonding involving D334, thereby allowing the kinase to lock into the active conformation. On the basis of the simulations, three predictions were made. G83A was suggested to impede activation; K162M was suggested to perturb the interface between the N- and C-domains leading to activation, and Q64C was hypothesized to stop folding of loop L16, thereby perturbing the homodimerization interface. Functional analysis of the mutants validated the predictions concerning the G83A and Q64C mutants. The K162M mutant did not autoactivate as predicted, however, which may be due to the location of the residue on the protein surface near the ED substrate docking domain.  相似文献   

4.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, immune deficiency, and a proclivity toward lymphoid malignancy. Lymphocytes of affected individuals show defects of activation, motility, and cytoskeletal structure. The disease gene encodes a 502-amino acid protein named the WAS protein (WASP). Studies have identified a number of important interactions that place WASP in a role of integrating signaling pathways with cytoskeletal function. We performed a two-hybrid screen to identify proteins interacting with WASP and cloned a proline-rich protein as a specific WASP interactor. Our clone of this protein, termed WASP interacting protein (WIP) by others, shows a difference in seven amino acid residues, compared with the previously published sequence revealing an additional profilin binding motif. Deletion mutant analysis reveals that WASP residues 101-151 are necessary for WASP-WIP interaction. Point mutant analyses in the two-hybrid system and in vitro show impairment of WASP-WIP interaction with three WASP missense mutants known to cause WAS. We conclude that impaired WASP-WIP interaction may contribute to WAS.  相似文献   

5.
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C.  相似文献   

6.
Two ATP-binding domains are found in members of the family of ATP-dependent transport proteins, which includes P-glycoprotein and cystic fibrosis transmembrane conductance regulator. To investigate the involvement of the two ATP-binding domains in the ATPase activity of P-glycoprotein, full-length and the 5'-half of human MDR1 cDNA, which encodes P-glycoprotein, were fused with the Escherichia coli lacZ gene and expressed in NIH3T3 cells. Immunoprecipitated full-length P-glycoprotein beta-galactosidase showed ATPase activity with apparent specific activity of 180 nmol/mg/min, a value higher than previously reported, in the presence of phospholipids, suggesting that stabilization of the transmembrane domains is necessary for ATP hydrolysis. N-terminal half P-glycoprotein-beta-galactosidase also showed ability to hydrolyze ATP but with slightly lower specific activity. Both ATPase activities showed similar characteristics when the effect of several inhibitors was analyzed, indicating that the N-terminal ATP-binding domain contains all residues necessary to hydrolyze ATP without interacting with the C-terminal ATP-binding domain.  相似文献   

7.
Resistance (R) proteins in plants are involved in pathogen recognitionand subsequent activation of innate immune responses. Most resistanceproteins contain a central nucleotide-binding domain. This so-calledNB-ARC domain consists of three subdomains: NB, ARC1, and ARC2.The NB-ARC domain is a functional ATPase domain, and its nucleotide-bindingstate is proposed to regulate activity of the R protein. A highlyconserved methionine–histidine–aspartate (MHD) motifis present at the carboxy-terminus of ARC2. An extensive mutationalanalysis of the MHD motif in the R proteins I-2 and Mi-1 isreported. Several novel autoactivating mutations of the MHDinvariant histidine and conserved aspartate were identified.The combination of MHD mutants with autoactivating hydrolysismutants in the NB subdomain showed that the autoactivation phenotypesare not additive. This finding indicates an important regulatoryrole for the MHD motif in the control of R protein activity.To explain these observations, a three-dimensional model ofthe NB-ARC domain of I-2 was built, based on the APAF-1 templatestructure. The model was used to identify residues importantfor I-2 function. Substitution of the selected residues resultedin the expected distinct phenotypes. Based on the model, itis proposed that the MHD motif fulfils the same function asthe sensor II motif found in AAA+ proteins (ATPases associatedwith diverse cellular activities)—co-ordination of thenucleotide and control of subdomain interactions. The presented3D model provides a framework for the formulation of hypotheseson how mutations in the NB-ARC exert their effects. Key words: Intramolecular interactions, MHD motif, NB-ARC domain, plant disease resistance, protein structure, R proteins, signal transduction, site-directed mutagenesis  相似文献   

8.
Retinoid X receptor (RXR) serves as a promiscuous heterodimerization partner for many nuclear receptors through the identity box, a 40-amino acid subregion within the ligand binding domain. In this study, we randomly mutated two specific residues within the human RXRalpha identity box region previously identified as important determinants in heterodimerization (i.e. Ala(416) and Arg(421)). Interestingly, most of these mutants still retained wild type interactions with thyroid hormone receptor (TR), retinoic acid receptor, peroxisome proliferator-activated receptor alpha, small heterodimer partner, and constitutive androstane receptor. However, RXR-A416D and R421L were specifically impaired for interactions with TR, whereas RXR-A416K lost both TR and retinoic acid receptor interactions. Accordingly, RXR-A416D did not support T3 transactivation in mammalian cells, whereas RXR-A416K was not supportive of transactivation by retinoids or T3. These results provide a basis upon which to further design mutant RXRs highly selective in heterodimerization, potentially useful tools to probe nuclear receptor function in vivo.  相似文献   

9.
Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations.  相似文献   

10.
Qiu Z  Yao J  Cao H  Gillam S 《Journal of virology》2000,74(14):6637-6642
Rubella virus (RV) virions contain three structural proteins, a capsid protein that interacts with viral genomic RNA to form a nucleocapsid and two membrane glycoproteins, E2 and E1. We found that substitution of either an aspartic acid residue at Gly93 (G93D) or a glycine residue at Pro104 (P104G) in the internal hydrophobic domain of E1 affected virus infectivity but not virus assembly. Viruses carrying G93D and P104G mutations had impaired infectivity, reduced 1,000-fold and 10-fold, respectively. A revertant was isolated from the G93D mutant. Sequencing analysis showed that the substituted aspartic acid residue in G93D mutant had reverted to the original glycine residue, suggesting the involvement of Gly93 in membrane fusion during viral entry.  相似文献   

11.
We used trio-based whole-exome sequencing to analyze two families affected by Weaver syndrome, including one of the original families reported in 1974. Filtering of rare variants in the affected probands against the parental variants identified two different de novo mutations in the enhancer of zeste homolog 2 (EZH2). Sanger sequencing of EZH2 in a third classically-affected proband identified a third de novo mutation in this gene. These data show that mutations in EZH2 cause Weaver syndrome.  相似文献   

12.
13.
The homodimeric transmembrane receptor natriuretic peptide receptor B (NPR-B [also known as guanylate cyclase B, GC-B, and GUC2B]; gene name NPR2) produces cytoplasmic cyclic GMP from GTP on binding its extracellular ligand, C-type natriuretic peptide (CNP). CNP has previously been implicated in the regulation of skeletal growth in transgenic and knockout mice. The autosomal recessive skeletal dysplasia known as "acromesomelic dysplasia, type Maroteaux" (AMDM) maps to an interval that contains NPR2. We sequenced DNA from 21 families affected by AMDM and found 4 nonsense mutations, 4 frameshift mutations, 2 splice-site mutations, and 11 missense mutations. Molecular modeling was used to examine the putative protein change brought about by each missense mutation. Three missense mutations were tested in a functional assay and were found to have markedly deficient guanylyl cyclase activity. We also found that obligate carriers of NPR2 mutations have heights that are below the mean for matched controls. We conclude that, although NPR-B is expressed in a number of tissues, its major role is in the regulation of skeletal growth.  相似文献   

14.
The hydrolysis of ATP that accompanies the polymerization of actin occurs on the F-actin subsequent to the addition of the G-ATP-actin subunit to the elongating filament. We now show that this ATP hydrolysis is essentially irreversible. Thus, a large decrease in free energy occurs at the cleavage step, F-ATP-actin----F-ADP-Pi-actin.  相似文献   

15.
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.  相似文献   

16.
17.
18.
C S Chow  D M Coen 《Journal of virology》1995,69(11):6965-6971
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.  相似文献   

19.
The ABC transporter HlyB is a central element of the HlyA secretion machinery, a paradigm of Type I secretion. Here, we describe the crystal structure of the HlyB-NBD (nucleotide-binding domain) with H662 replaced by Ala in complex with ATP/Mg2+. The dimer shows a composite architecture, in which two intact ATP molecules are bound at the interface of the Walker A motif and the C-loop, provided by the two monomers. ATPase measurements confirm that H662 is essential for activity. Based on these data, we propose a model in which E631 and H662, highly conserved among ABC transporters, form a catalytic dyad. Here, H662 acts as a 'linchpin', holding together all required parts of a complicated network of interactions between ATP, water molecules, Mg2+, and amino acids both in cis and trans, necessary for intermonomer communication. Based on biochemical experiments, we discuss the hypothesis that substrate-assisted catalysis, rather than general base catalysis might operate in ABC-ATPases.  相似文献   

20.
Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility, and mice with Hydin defects develop lethal hydrocephalus. To determine if defects in Hydin cause hydrocephalus through a mechanism involving cilia, we compared the morphology, ultrastructure, and activity of cilia in wild-type and hydin mutant mice strains. The length and density of cilia in the brains of mutant animals is normal. The ciliary axoneme is normal with respect to the 9 + 2 microtubules, dynein arms, and radial spokes but one of the two central microtubules lacks a specific projection. The hydin mutant cilia are unable to bend normally, ciliary beat frequency is reduced, and the cilia tend to stall. As a result, these cilia are incapable of generating fluid flow. Similar defects are observed for cilia in trachea. We conclude that hydrocephalus in hydin mutants is caused by a central pair defect impairing ciliary motility and fluid transport in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号