首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human lymphoid cell lines Walker and Daudi constitute a particularly suitable system for studies on the chromatin structure of K light chain genes (see preceding paper). The rearranged and non-rearranged alleles of Walker cells were found to be about equally sensitive towards digestion with DNAase I. A DNAase I hypersensitive site was mapped 0.13 kb upstream of the leader segment of the rearranged VK genes; it comprises a region in which promoter-like regulatory elements were discovered recently. Additional hypersensitive sites are located further upstream. A hypersensitive site in the JK-CK intron coincides with a putative tissue specific enhancer element. A hypersensitive region down-stream of CK overlaps with the cleavage/polyadenylation recognition signal which is flanked by sequences related to the above mentioned putative regulatory sequences. The coincidence between DNAase I hypersensitive sites and those sequences may be functionally significant.  相似文献   

2.
2318 bp downstream of the CK (1) gene segment were sequenced in a clone (L1-D) derived from mouse liver DNA. The 966 bp at the 5' side of this stretch were found to be identical to a sequence which had been determined previously in a myeloma T derived clone, i.e. no somatic mutations had occurred in the transition from the germline to the rearranged configuration. The remaining 1352 bp had not been known and extend the sequenced part of the mouse JK-CK region to about 7.5 kb. Within the newly sequenced area three BspRI sites have been located which were used in chromatin studies (Weischet et al., accompanying publications). In L1-D sequences have been found which are possible targets of aberrant recombination events.  相似文献   

3.
The series of studies on the human K light chain genes of the various subgroups is concluded by this report on the isolation and nucleotide sequence determination of a functional VKIV gene (abbreviations ref. 1) and its germline counterpart. The rearranged gene which stems from a lymphoid cell line and the germline gene differ in four nucleotides which can be attributed to somatic mutations; three of the mutations are clustered in CDR3. The germline gene regions of two unrelated individuals were identical over a stretch of 1267 bp. By hybridization experiments it is shown that the human K locus contains only one VKIV gene. In 16 lymphoid cell lines studied here, the VKIV gene is frequently deleted or aberrantly rearranged which may be a consequence of peculiarities of its function and/or its structural organization.  相似文献   

4.
Five families of variable region genes of mouse kappa chains were analyzed by Southern blot hybridization to determine their relative chromosomal map positions. Map positions were deduced by Vk gene deletion from antibody-producing cells expressing upstream Vk genes and retention in cells expressing downstream genes. The Vk regions expressed in the myelomas M0PC167, MPC11, M0PC21 and ABPC20 are members of Vk families exhibiting one, three, six and six major germline hybridization bands respectively. The gene order of the five families in germline DNA was found to be VM167-VM11-(VM21, VA20)-VABE8-Jk-Ck. As expected in a deletion model of immunoglobulin gene rearrangement, a sequence located just 5' of J1 in germline DNA was found to be absent from some antibody producing cells which had not retained any germline Ck genes. However, other cell lines contained this sequence in rearranged contexts, suggesting that any deletion model of immunoglobulin V-J joining, as well as V gene mapping, must take into account the possibilities of stepwise rearrangements and reintegration of "deleted" DNA.  相似文献   

5.
Monoclonal antibodies specific for the synthetic polypeptide antigen (T,G)-A--L have been produced in two strains of mice, C57BL/10 and C3H.SW. The genes encoding the variable (V) regions of these antibodies have been studied by using the DNA hybridization technique of Southern, as well as by gene cloning and sequencing. Hybridization of DNA from 14 different cell lines with a kappa-chain probe revealed that the different cell lines used one of two different gene rearrangements to encode the recombined V region gene. There was a perfect correlation between light chain rearrangement, idiotype expression, and fine specificity. Hybridization analyses of the heavy chain revealed a more complex pattern. Seven hybridomas had the rearranged heavy chain V region genes on a 4.4 kb EcoRI restriction fragment. Others were found on restriction fragments that differed in length by several hundred base pairs. The recombined heavy chain V region genes were cloned from three different hybridoma cell lines secreting anti-(T,G)-A--L antibodies, all of which express the same idiotype and fine specificity pattern. Restriction mapping and sequencing indicate that all three utilize the same V gene, identified as the 186-2 germline gene. However, different D and J genes are used to encode each of the antibodies. In contrast to the results seen in other antigen systems, heavy chain D and J genes do not have a major influence on idiotype expression and fine specificity of antibodies to the synthetic polypeptide (T,G)-A--L.  相似文献   

6.
7.
P Marsh  F Mills    H Gould 《Nucleic acids research》1985,13(18):6531-6544
We have cloned the cDNA encoding the KIV chain of a human antibody with specificity against the major carbohydrate antigen of Streptococcus A. The cDNA has been used as a genetic probe to estimate the number of germline VKIV genes in human DNA. The presence of unique hybridizing bands on digestion of human DNA with several restriction endonucleases and the equivalence of the DNA in a band to a single gene per haploid genome point to the conclusion that there is a unique human VKIV germline gene. The corollary of this conclusion is that the diversity of human VKIV chains must be exclusively due to somatic mutation. This is supported by examination of the sequences of human KIV chain genes and their KIV chain products. Fusion of the unique germline VKIV gene (1) with one of several JK segments, followed by somatic mutations in the V region of the rearranged KIV gene, can account for the known sequences. The restricted germline gene repertoire may account for the small proportion of human KIV chains in the human K chain sequence library (2).  相似文献   

8.
All of the T cell receptor alpha- and beta-chain rearrangements present in a dual reactive T cell clone were characterized. This clone exhibits allelic exclusion of its beta-chain genes in that only one of the two alleles is productively rearranged. Unexpectedly, it displays two productive V alpha-gene rearrangements, which are both transcribed into 1.5 kb mRNA. The contribution of each of the two productive alpha genes to the dual recognition was analyzed by gene transfer. To this end, each of the two alpha genes was separately transfected with the single productively rearranged beta gene. Transfer of only one of the two alpha beta combinations restored both allogeneic MHC recognition and self MHC-restricted antigen recognition. Thus, T cell dual recognition results from the cross-reactive recognition of an allo-MHC product by a single antigen-specific and MHC-restricted alpha beta T cell receptor. Furthermore, the presence of two productively rearranged alpha-chain genes in a T cell clone raises questions concerning the level at which allelic exclusion operates in T cells.  相似文献   

9.
The rearrangement of a variable (V) and a constant (C) gene appears to be a necessary prerequisite for immunoglobulin gene expression. Multiple different rearranged kappa genes were found in several mouse myelomas, although these cells produce only one type of kappa chain [Wilson, R., Miller, J., & Storb, U. (1979) Biochemistry 18, 5013--5021]. It is therefore of interest to understand how only one allele within a lymphoid cell becomes expressed, while the other allele remains nonfunctional ("allelic exclusion"). We have studied the chromatin conformation of kappa genes by making use of the preferential digestion of potentially active genes by DNase I described, for example, for globin genes [Weintraub, H., & Groudine, M. (1976) Science (Washington, D.C.) 193, 848--856]. The DNase I sensitivity of kappa genes in myeloma tumors, in a B cell lymphoma, and in liver was determined by hybridization with DNA on Southern blots. It was found that rearranged C kappa genes are DNase I sensitive in myelomas in which several kappa genes are rearranged, regardless of whether the rearranged genes code for the kappa chains synthesized by the cell. Furthermore, the C kappa gene in germline configuration is also DNase I sensitive in a B cell lymphoma; i.e., it is in the same chromatin state as the rearranged C kappa gene which probably codes for the kappa chains produced by the cell. The altered chromatin state appears to be localized: V kappa genes in germline context are not DNase I sensitive in myeloma or B lymphoma cells while C kappa genes present in a kappa gene cluster on the same chromosomes are sensitive. When rearranged, however, the V kappa genes are as sensitive to DNase I as are rearranged C kappa genes. V lambda and C lambda genes are not DNase I sensitive in kappa myelomas. Thus, commitment to kappa gene expression is apparently correlated with a chromatin conformation which confers increased DNase I sensitivity to the DNA in the vicinity of all C kappa genes in the cell. "Allelic exclusion" does not operate on the level of chromatin conformation which can be detected by altered DNase I sensitivity.  相似文献   

10.
We constructed cDNA libraries from poly(A)+ RNA isolated from cell lines of two different inbred strains of mice, and screened the libraries with a cDNA clone encoding a human transplantation antigen. Three cDNA clones were identified, sequenced and found to encode amino acid sequences highly homologous to portions of a known mouse transplantation antigen. Comparison of the cDNA sequences of mouse transplantation antigens with the constant region domains of the mouse immunoglobulin μ gene reveals a striking homology, which suggests that the two genes share a common ancestor. Antibody genes undergo DNA rearrangements during B cell differentiation that are correlated with their expression. In contrast, DNA blots with these cDNA probes suggest that the genes for the transplantation antigens are not rearranged in the genomes of liver or embryo cells, which express these antigens, as compared with sperm cells, which do not express these antigens. In Bam HI-digested liver DNAs from different inbred strains of mice, 10–15 bands of hybridization were found. Accordingly, the genes encoding the transplantation antigens appear to constitute a multigene family with similar gene numbers in different mice.  相似文献   

11.
12.
The presence of distinct cytolytic subsets within interleukin-2-expanded peripheral blood leukocytes (IEL) cultures was demonstrated by clonal analysis. Thirty-seven IEL clones were isolated from two healthy blood donors; 21 destroyed both Daudi and K562 cell lines. Of those 21 clones, 1 clone could destroy autologous PBM, 7 clones could destroy fresh allogeneic ovarian carcinoma (OVA-CA) cells, and 6 clones could destroy normal autologous PBM and fresh OVA-CA cells. Twelve of the 37 clones destroyed only one of the four targets tested: 8 clones destroyed K562, 2 clones destroyed Daudi, and 1 clone each was selective for autologous PBM or OVA-CA. Of the remaining 4 clones, 1 destroyed OVA-CA and Daudi cells, 1 destroyed PBM and K562, 1 destroyed PBM and Daudi cells, and 1 destroyed PBM, Daudi, and OVA-CA. These results suggest that these functionally heterogeneous cytolytic clones may use different cell recognition or cytolytic mechanisms to enable these distinct and, at times, reciprocal patterns of target cell selectivity.  相似文献   

13.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

14.
Studies of Ig and TCR genes in transformed lymphocytes of scid mice have revealed aberrant DNA rearrangements. Here we present a more detailed analysis of the Igh gene recombination in nine scid pre-B cell lines transformed by Abelson murine leukemia virus. We found 85% of the rearranged Igh alleles to contain abnormal Dh-Jh deletions of varying size. All of these deletions encompassed Jh elements and extended into the Igh enhancer region, occasionally involving the switch (S) region of the C mu gene. Some of these rearrangements removed most of the Dh elements, but none appeared to extend to the Vh genes. DNA sequence analysis of the two abnormally rearranged Igh alleles in one pre-B cell line showed that no Dh or Jh coding sequences were retained at the recombination sites though heptamer-like (CACTGTG) recognition signal sequences were present in the absence of nonamer (GGTTTTTGT) recognition signal sequences. These results imply that a deregulated recombinase activity may be responsible for the abnormal Dh-Jh deletions and the absence of Vh-Dh joining in established lines of Abelson murine leukemia virus-transformed scid pre-B cells.  相似文献   

15.
Cheng M  Chan SY  Zhao Q  Chan EY  Au SW  Lee SS  Cheung WT 《PloS one》2011,6(11):e27406
Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig) variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR) step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3). The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx). Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N) protein of SARS-associated coronavirus (SCoV) were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.  相似文献   

16.
17.
Human immunoglobulin kappa light chain genes of subgroups II and III.   总被引:20,自引:6,他引:14       下载免费PDF全文
The first complete sequences of functionally rearranged VK genes (abbreviations ref. 1) of subgroups II and III are reported. The genes have been cloned from lymphoid cell lines synthesizing KII or KIII light chains as evidenced from immunochemical analyses with anti-VK subgroup-specific antisera. These data, together with the sequence of a KIV gene (described in the accompanying paper) and those of previously published KI genes make possible a comparison of genes representative of the four known V region subgroups of human K light chains. The VKII gene is distinguished from the VKI, VKIII, and VKIV genes by a much longer intron within the leader sequence: 426 bp vs ca. 120-220 bp. Blot hybridization experiments with human DNA digests using probes from the KII and KIII genes and from the respective upstream regions help to define subgroup specific probes and hybridization conditions.  相似文献   

18.
Transformation of peripheral blood lymphocytes by co-incubation with EBV produces B lymphoblastoid cell lines, but rearrangement of TCR beta-chain genes was observed in three different cell lines derived from two individuals. Because rearrangement of TCR genes in B lymphocytes is considered a rare event, these B lymphoblastoid cell lines with rearranged TCR beta-genes were examined in detail to determine whether there were any additional characteristics to distinguish them from B lymphoblastoid cell lines with germ-line TCR beta-genes. All B lymphoblastoid cell lines contained rearranged Ig H and kappa L chain genes, secreted Ig, and expressed B and not T cell surface markers. Cell lines with rearranged TCR beta-genes had rearranged both IgH genes and had rearranged and subsequently deleted both kappa C region genes. Furthermore all three B lymphoblastoid cell lines with rearranged TCR beta-genes produced small amounts of Ig with lambda-L chains. Although the cellular mechanisms maintaining lineage-specific rearrangement events remain unknown, extensive Ig gene rearrangement and inefficient Ig production by B cells may be indicators of a cellular status where normally stringent lineage-specific control elements fail to function efficiently.  相似文献   

19.
The recombination process that joins a VK to a JK segment of an immunoglobulin gene generates a second, reciprocal recombination product called f fragment. In this second product the regions flanking the VK and JK segments in the germline are joined in a head to head fashion. We now analysed f fragments in the human lymphoid cell lines Daudi, JI and IARC/BL41. All three f fragments contain JK1 flanks; the VK derived moiety of f Daudi and f41 could be traced back to known germline VK genes. There is a precise head to head joining of the heptanucleotide signal sequences in f Daudi and fJI while in f41 six nucleotides are present between the signal sequences. In contrast to the VK-JK recombination products, the f fragments were found to lack somatic mutations. The structures of the f fragments are discussed in the context of the VK-JK rearrangement mechanism.  相似文献   

20.
We describe a process for the identification of mRNAs within single cells, as demonstrated with the immunoglobulin (Ig) variable region (V) genes of two mouse hybridoma cell lines and the bcr-abl fusion gene of the human K562 myeloid leukaemia line. The cells were fixed and permeabilised, the mRNA reverse transcribed to cDNA and the cDNA amplified by the polymerase chain reaction (PCR). After using fluorescent PCR primers, the amplified DNA could be detected within the cells as demonstrated by confocal fluorescence microscopy and flow cytometry. Furthermore the amplified Ig VH and VL DNA could be assembled within the same cell using suitable PCR primers. We detected no cross-contamination of amplified DNA between cells: the DNA isolated from mixtures of two hybridoma cell lines (B1-8 and NQ10/12.5) treated to in-cell PCR and assembly, was shown by cloning to correspond to the combinations of VH and VL genes of the parent hybridomas. We forsee diverse applications of in-cell assembly by PCR, especially for the analysis of the combinations of chains of rearranged Ig or T cell receptor (TCR) V-genes in a population of cells, and the construction of human antibodies from the V-genes of immune B-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号