首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The aim of this study was to analyze the effects of 45min of hepatic ischemia and 1h of reperfusion on renal oxidative stress parameters, on renal tissue damage, and the role of Desferrioxamin (Dfx) and Q on these parameters. METHODS: Thirty Wistar albino rats were randomized to five groups. Group I was the control group. Group II received no treatment. Groups III and IV received intramuscular injections of desferrioxamine (100mg/kg) and quercetin (50mg/kg), respectively. Group V was administered Dfx and quercetin in combination. After treatment for 3 days, groups II, III, IV, and V were exposed to total hepatic ischemia for 45min. Plasma alanine aminotransferase levels, renal malondialdehyde and reduced glutathione (GSH) activities were measured after reperfusion for 1h. Histopathological and ultrastructural analysis of renal tissues was carried out. RESULTS: Plasma creatinine and BUN levels were markedly increased in the IR group and pretreated groups. Kidney MDA increased in the IR group, Q and Dfx+Q significantly decreased kidney MDA Kidney GSH levels markedly decreased in the IR group, Dfx significantly increased kidney GSH. No evidence of overt injury was observed in any renal tissue under light and electron microscopy. CONCLUSIONS: Our data demonstrated that 45min of hepatic ischemia and 1h of reperfusion may alter renal functions and may cause oxidative stress on renal tissue. Q and Dfx seem to have a beneficial effect via the GSH system and modulation of MDA levels.  相似文献   

2.
The extent of brain injury during reperfusion appears to depend on the experimental pattern of ischemia/reperfusion. The goals of this study were: first, to identify the rate of free radicals generation and the antioxidant activity during ischemia and reperfusion by means of biochemical measurement of lipid peroxidation (LPO) and both enzymatic (superoxid dismutase - SOD, catalase - CAT, glutathion peroxidase - GPx) and non-enzymatic antioxidants activity (glutathione - GSH); and second, to try to find out how the pattern of reperfusion may influence the balance between free radical production and clearance. Wistar male rats were subject of four-vessel occlusion model (Pulsinelly & Brierley) cerebral blood flow being controlled by means of two atraumatic arterial microclamps placed on carotid arteries. The level of free radicals and the antioxidant activity were measured in ischemic rat brain tissue homogenate using spectrophotometrical techniques. All groups subjected to ischemia shown an increase of LPO and a reduction of the activity of enzymatic antioxidative systems (CAT, GPx, SOD) and non-enzymatic systems (GSH). For both groups subjected to ischemia and reperfusion, results shown an important increase of LPO but less significant than the levels found in the group with ischemia only. Statistically relevant differences (p<0.01) between continuous reperfusion and fragmented reperfusion were observed concerning the LPO, CAT, SOD and GSH levels, oxidative aggresion during fragmented reperfusion being more important.  相似文献   

3.
Ischemic preconditioning (IPC) not only reduces local tissue injury caused by subsequent ischemia-reperfusion (IR) but may also have a beneficial effect on IR injury of tissues remote from those undergoing preconditioning. In this study, we investigated the effect of small intestinal IPC on renal IR injury in rats. Renal IR injury was induced by a 45-min renal artery occlusion and reperfusion for 2 or 24 h in rats with a previous contralateral nephrectomy, and ischemic preconditioning was induced by 3 cycles of 8-min ischemia and 5-min reperfusion of the small intestine. We then measured the concentrations of plasma creatinine (Cr) and blood urine nitrogen (BUN) and the level of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT) in the renal cortex. Renal histopathology also was evaluated. Pretreatment with intestinal ischemic preconditioning significantly alleviated renal IR injury, as shown by decreases in the levels of Cr, BUN, and MDA, decreased renal morphologic change, and improved preservation of SOD and CAT activities. These results suggest that remote ischemic preconditioning of the small intestine protects against renal IR injury by inhibition of lipid peroxidation and preservation of antioxidant enzyme activities.  相似文献   

4.
Urinary tract infections are common in pregnant women and ciprofloxacin frequently is used as a broad spectrum antibiotic. It has been suggested that ciprofloxacin causes liver damage in fetuses. Quercetin is a flavonoid with antioxidant properties. We investigated the efficacy of quercetin treatment for preventing fetal liver damage caused by ciprofloxacin. Pregnant rats were divided into four groups: untreated control group (C), 20 mg/kg quercetin for 21 days group (Q), 20 mg/kg twice/day ciprofloxacin for 10 days group (CP), and 20 mg/kg, ciprofloxacin + quercetin for 21 days group (CP + Q). Fetal livers were removed on day 21 of gestation to measure antioxidants and for histological observation. Malondialdehyde (MDA) and glutathione (GSH) levels, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in tissue samples. GSH-Px, SOD and CAT activities were significantly lower in the CP group compared to group C. A significant increase in MDA was observed in the CP group compared to group C. There was no significant difference in GSH levels in any group. MDA levels were lower and CAT, SOD and GSH-Px enzyme activities were higher in the CP + Q group compared to group CP. Liver samples of the CP group exhibited central vein dilation, portal vein congestion, pyknotic nuclei and cytoplasmic vacuolization in some hepatocytes. Histological changes were less prominent in the rats treated with quercetin. Use of ciprofloxacin during pregnancy caused oxidative damage in fetal liver tissue. Oxidative stress was ameliorated by quercetin. Quercetin supports the antioxidant defense mechanism and it is beneficial for treating fetal liver damage caused by ciprofloxacin.  相似文献   

5.
目的:探讨维生素E(VE)在青年和老年大鼠肾缺血/再灌注损伤(RI/RI)中的作用。方法:采用夹闭双侧肾动、静脉45min后恢复血流的方法制作RI/RI模型,测定血清中尿素氮(BUN)、肌酐(Scr)、丙二醛(MDA)、超氧化物歧化酶(SOD)、一氧化氮(NO)、诱生型一氧化氮合酶(iNOS)浓度,免疫组化检测肾皮质热休克蛋白70(HSP70)表达。流式细胞术检测肾皮质细胞凋亡率。结果:缺血/再灌注(I/R)后BUN、Scr含量明显升高,老年I/R组MDA含量高于青年I/R组,SOD含量低于青年IR组,HSP70、NO以及肾皮质细胞凋亡率高于control组;VE可显著降低RI/RI大鼠BUN、Scr、MDA、iNOS水平,升高NO和SOD水平,增加HSP70的表达,降低肾皮质细胞凋亡率。结论:VE可通过促进肾组织HSP70的表达,增加NO和SOD水平,提高大鼠体内清除自由基的能力,从而对青、老年大鼠肾缺血/再灌注损伤(RI/RI)起到一定的保护作用。  相似文献   

6.
Erdosteine is a mucolytic agent having antioxidant properties through its active metabolites in acute injuries induced by pharmacological drugs. This study was designed to investigate the renoprotective potential of Erdosteine against gentamicin (GM)-induced renal dysfunction by using Technetium-99 m dimercaptosuccinic acid (Tc-99 m DMSA) uptake and scintigraphy in rats. For this purpose, male Wistar rats were randomly allotted into one of the four experimental groups: Control, Erdosteine, GM, and GM + Erdosteine groups. GM and GM + Erdosteine groups received 100 mg/kg GM intramuscularly for 6 days. In addition, Erdosteine and GM + Erdosteine groups received 50 mg/kg Erdosteine orally for 6 days. Renal function tests were assessed by serum blood urea nitrogen (BUN), creatinine levels, as well as scintigraphic and tissue radioactivity measurements with Tc-99 m DMSA. Renal oxidative damage was determined by renal malondialdehyde (MDA) levels, by antioxidant enzyme activities; superoxide dismutase (SOD) and catalase (CAT) and activities of oxidant enzymes; xanthine oxidase (XO) and myeloperoxidase (MPO). GM administration resulted in marked renal lipid peroxidation, increased XO and MPO activities and decreased antioxidant enzyme activities. GM + Erdosteine group significantly had lower MDA levels, higher SOD and CAT activities and lower XO and MPO activities, when compared to GM. Also GM + Erdosteine had lower levels of serum BUN, creatinine and higher renal tissue Tc-99 m DMSA uptake and radioactivity with respect to GM. In conclusion, our results supported a protective role of Erdosteine in nephrotoxicity associated with GM treatment.  相似文献   

7.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

8.
ABSTRACT

We investigated how resveratrol affects lipid oxidation during experimental renal ischemia-reperfusion injury in rats. We used 48 adult male rats assigned to five groups: group 1, control; group 2, renal ischemia; group 3, renal ischemia + reperfusion; group 4, resveratrol + renal ischemia; group 5, resveratrol + renal ischemia + reperfusion. Plasma and renal tissue malondialdehyde (MDA), and erythrocyte and renal tissue glutathione (GSH) levels were measured and histologic changes in the renal tissue were examined. Ischemia-reperfusion affected the MDA-GSH balance adversely and caused histopathological changes in the renal tissue of the ischemia and ischemia + reperfusion groups. Resveratrol treatment normalized MDA and GSH levels as well as the histopathology that occurred in the renal tissue of the ischemia and ischemia + reperfusion groups.  相似文献   

9.
异丙酚对家兔肝缺血/再灌注后抗氧化能力改变的影响   总被引:13,自引:1,他引:12  
目的: 探讨氧自由基(OFR)在肝缺血/再灌注损伤(HI/RI)中的作用及异丙酚对其的影响.方法: 实验兔随机分为假手术对照组、肝缺血/再灌注组和肝缺血/再灌注加异丙酚治疗组,分别在肝缺血前、缺血45 min、再灌注45 min共3个时相点,检测血浆及肝组织超氧化物歧化酶(SOD)活性、黄嘌呤氧化酶(XO)活性、丙二醛( MDA)浓度及谷丙转氨酶(ALT)值,并行肝组织电镜观察.结果: 肝缺血/再灌注期间,血浆XO、MDA及ALT显著高于、SOD明显低于假手术对照组(P<0.05和P<0.01);肝组织XO及MDA显著高于、SOD明显低于假手术对照组(P<0.05和P<0.01);肝组织超微结构发生异常改变.异丙酚可逆转上述指标的异常变化,与肝缺血/再灌注组相比有显著性差异(P<0.05和P<0.01).结论: OFR在HI/RI发生发展中起介导作用;异丙酚可通过降低氧自由基水平(增强SOD活性、减弱XO活性),拮抗脂质过氧化反应(降低MDA浓度),从而减轻HIRI.  相似文献   

10.
Liver ischemia/reperfusion (IR) injury is a complex phenomenon that may cause local as well as remote organ injuries. Reactive oxygen species (ROS) along with many pro- and anti- inflammatory cytokines are implicated in the development of organ injury. The renal functional, histological, oxidative stress and inflammatory indices were studied during a short and a longer period of liver IR. Rats were subjected to either sham operation or 90 min partial liver ischemia followed by 4 or 24 h of reperfusion. Serum ALT, AST, ALK and LDH levels, BUN and creatinine, renal MDA level, SOD and catalase activities were evaluated as well as serum IL-6 and IL-10 concentrations along with renal histological evaluation. Ninety minutes liver ischemia /4 h reperfusion caused an increase in BUN and renal MDA levels and a decrease in SOD and catalase activities. It also caused an increase in serum IL-6 and IL-10 levels. 24 h liver reperfusion resulted in a reduction in BUN levels and lower oxidative damages demonstrated by a decrease in renal MDA levels and an increase in renal SOD and catalase activities comparing to 4 h reperfusion group. Evaluations indicated improvement in histology such as less cytoplasmic vacuolation and lower tubular debris. Serum inflammatory indices (IL-6 and IL-10 levels) were also reduced. This study showed that liver IR damage causes renal injury including functional, inflammatory and oxidative status changes. The remote kidney damage was then improved by continuing reperfusion from 4 to 24 h.  相似文献   

11.
Salusin-α and salusin-β are expressed in many tissues including the central nervous system, vessels and kidneys; they have been shown to decrease endoplasmic reticulum stress during heart ischemia/reperfusion (I/R) and to decrease apoptosis. We investigated the relation of salusin-α and salusin-β levels to acute ischemic renal failure. We also investigated whether these peptides are protective against renal I/R damage. Fifty-three rats were divided into six groups: control, I/R, I/R + salusin-α1, I/R + salusin-α10, I/R + salusin-β1 and I/R + salusin-β10. After removing the right kidney, the left kidney was subjected to ischemia for 1 h and reperfusion for 23 h. The treatment groups were injected subcutaneously at the beginning of ischemia with 1 or 10 μg/kg salusin-α, and 1 or 10 μg/kg salusin-β. Histopathology was assessed at the end of the experiment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) levels were measured in the kidney tissue. Serum levels of blood urea nitrogen (BUN), creatinine (Cre), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) also were measured. Levels of salusin-α and salusin-β were measured in the serum and kidney tissues of the control and I/R groups. SOD, CAT and GSH-PX activities were decreased and the levels of MDA, TNF-α, IL-6, IL-1β, BUN and Cre were increased in the I/R group compared to controls. Severe glomerular and tubular damage was apparent in the I/R group compared to controls. The level of salusin-β was decreased in the serum and kidney tissue of the I/R group compared to controls, whereas the level of salusin-α was decreased in the serum and increased in the kidney tissue. Salusin-α and salusin-β administration increased SOD and GSH-PX enzyme activation and decreased the levels of MDA, TNF-α, IL-6 and IL-1β compared to the I/R group. BUN and Cre levels were decreased in the I/R + salusin-α1 group and the level of Cre was decreased in I/R + salusin-β10 group compared to the I/R group. We demonstrated a protective effect of salusin-α and salusin-β against renal I/R damage. Changes in the levels of salusin-α and salusin-β in the I/R group suggest that these peptides may be associated with acute renal failure.  相似文献   

12.
Thyroid hormones modulate haemoglobin and reactive oxygen species (ROS) production, leading to antioxidant changes. This study evaluated the antioxidant response to ROS in erythrocytes in hypothyroid and hyperthyroid rats. Wistar rats were divided into four groups: control; hyperthyroid (T4-12 mg 1(-1) in drinking water); sham operated (simulation of thyroidectomy); and hypothyroid (thyroidectomized). Four weeks after, blood was collected and haemoglobin and T(4) levels, lipid peroxidation (LPO), protein oxidation, superoxide dismutase (SOD), catalase (CAT) , glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities, and total radical antioxidant potential (TRAP) were measured. SOD, CAT and GST immunocontent was evaluated. Haemoglobin levels were increased in hyperthyroid erythrocytes. LPO and carbonyls were augmented (65% and 55%, respectively) in hyperthyroid and reduced (31% and 56%, respectively) in hypothyroid group. SOD and CAT activities have not changed, as well as CAT immunocontent. TRAP was diminished in both hyperthyroid and hypothyroid groups (36% and 37%, respectively). GST activity and immunocontent, as well as GPx activity, were increased in hyper and hypothyroid rats. The data suggest that thyroid hormone changes determine ROS concentration changes and decrease of some antioxidant defences that would lead to a compensatory answer of the GST and GPx enzymes, which could be consider as credible biomarkers.  相似文献   

13.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

14.
目的:证实抗氧化酶活性上调是肢体远程预处理(remote preconditioning,RPC)诱导兔脊髓缺血耐受效应的主要机制之一。方法:60只雄性新西兰大白兔随机分成对照组、远程预处理组、缺血组及RPC 缺血组(对照组n=6,余组n=18)。RPC组行双下肢短暂缺血2次(每次10min,间隔10min);缺血组仅行脊髓缺血模型;RPC 缺血组在远程预处理后1h行脊髓缺血;对照组为假手术组。对照组于脊髓缺血再灌注后48h行神经功能评分后取脊髓,作为对照。余三组分别于再灌注后6h、24h及48h评分后取材,各时间点各取6只。所有动物于缺血前、缺血20min、再灌注20min及再灌注6h采动脉血测血清抗氧化酶活性和丙二醛(MDA)含量;于取材后测定脊髓匀浆抗氧化酶活性和MDA含量。结果:再灌注后6h、24h及48h时对照组、远程预处理组及远程预处理 缺血组神经功能评分均明显高于缺血组(P<0.05)。血浆超氧化物歧化酶(SOD)活性和过氧化氢酶(CAT)活性在每个时间点RPC组均高于对照组,RPC 缺血组高于缺血组(P<0.05);其中缺血20min时,缺血组血浆SOD、CAT活性低于对照组,RPC 缺血组低于RPC组(P<0.05);而与缺血前相比,缺血20min时缺血组及RPC 缺血组SOD和CAT活性显著下降(P<0.05)再灌注24h和48h时,脊髓匀浆SOD、CAT活性对照组低于RPC组,缺血组低于RPC 缺血组(P<0.01);而MDA含量再灌注24h时对照组高于RPC组,缺血组高于RPC 缺血组(P<0.05)。脊髓匀浆SOD、CAT活性与神经功能评分具有显著相关性。结论:RPC诱导脊髓缺血耐受的机制可能为上调抗氧化酶活性,增强机体在缺血再灌注过程中清除氧自由基的能力,从而减少氧自由基介导的损伤,发挥脊髓保护作用。  相似文献   

15.
The advantageous influence of quercetin (Q) supplementation in an extender has not yet been evaluated for rooster semen cryopreservation. This research was purposely conducted in order to assess the effect of different quercetin concentrations added into an extender on the sperm quality of the rooster subsequent to a freezing-thawing process. After the freezing-thawing process, spermatozoa quality parameters (membrane functionality, acrosome integrity, motility, viability, and abnormal morphology), endogenous enzymes (SOD, CAT, and GPx), mitochondrial activity, DNA fragmentation index, lipid peroxidation (MDA), and ROS were all evaluated. A total of 75 neat pooled ejaculates (3 ejaculates/rooster) were collected from 25 arbor acres roosters (24 wks) twice a week using abdominal massage technique, then divided into five equal aliquots and diluted with an extender containing different doses of Q (CS-Q) as follows: casein extender without Q (control only), casein extender containing 0.040 mg/mL quercetin (CS-Q 0.040), 0.020 mg/mL quercetin (CS-Q 0.020), 0.010 mg/mL quercetin (CS-Q 0.010), and 0.005 mg/mL quercetin (CS-Q 0.005). Our results depicted that adding to the extender with a 0.010 mg/mL Q enhanced (P < 0.01) sperm motility, membrane function, viability, mitochondrial activity, intact acrosome (P < 0.05), SOD (P < 0.001), CAT, and GPx (P < 0.01) compared to the control group at post-thaw. Compared to the control group and other treatment groups after the freeze-thawing process, the addition of 0.005 mg/mL Q into the extender also showed higher (P < 0.05) improvement in the quality of sperm parameters and a higher (P < 0.01) SOD and CAT but did not improve mitochondrial activity and sperm viability. In addition, there was a lower degree of DNA fragmentation index, lower (P < 0.05) lipid peroxidation and ROS in frozen-thawed sperm treated with 0.010 mg/mL and 0.005 mg/mL Q than in control and the other treatment groups. In addition, 0.020 mg/mL Q supplementation into the extender also reduced DNA fragmentation and improved GPx activity compared to the control group at post-thaw. Different concentrations of Q 0.010 and 0.005 mg/mL added to the extender reduced the percentage of abnormal spermatozoa compared to the other groups. The results of this study showed for the first time that the inclusion of an extender with a suitable quercetin concentration of 0.010 mg/mL improved the post-thawed quality of rooster semen.  相似文献   

16.
There is a great evidence that reactive oxygen species (ROS) play an important role in the pathophysiology of ischemia −reperfusion(I/R)injury in skeletal muscle.Caffeic acid phenethyl ester(CAPE)is a component of honeybeep ropolis.It has antioxidant, anti−inflammatory and free radical scavenger properties.The aim of this study is to determine the protective effects of CAPE against I/R injury in respect of protein oxidation, neutrophil in filtration, and the activities of xanthine oxidase(XO)and adenosine deaminase(AD)onan<invivomodel of skeletal muscle I/R injury.Rats were divided into three equal groups each consisting of sixrats:Sham operation, I/R, and I/R plus CAPE(I/R+CAPE)groups.CAPE was administered intraperitoneally 60 min before the beginning of the reperfusion.At the end of experimental procedure, blood and gastrocnemius muscle tissues were used for biochemical analyses.Tissue protein carbonyl(PC)levels and the activities of XO, myeloperoxidase(MPO) and AD in I/R group were significantly higher than that of control(p0.01, p0.05, p0.01, p0.005, respectively).Administration of CAPE significantly decreased tissue PC levels, MPO and XO activities in skeletal muscle compared to I/R group(p0.01, p0.05, p0.05, respectively).In addition, plasma creatine phosphokinase(CPK), XO and ADactivities were decreased in I/R+CAPE group compared to I/R group(p0.05, p0.05, p0.001). The results of this study revealed that free radical attacks may play an important role in the pathogenesis of skeletal muscle I/R injury. Also, the potent free radical scavenger compound, CAPE, may have protective potential in this process. Therefore, it can be speculated that CAPE or other antioxidant agents may be useful in the treatment of I/R injury as well as diffused traumatic injury of skeletal muscle.  相似文献   

17.
Ischemic-reperfusion (IR) injury of the small intestine makes a serious complications associated with various surgical procedures and is related to changes in motility, secretory activity and structural alterations. Preconditioning can reduce range of this damage. The aim of the experimental study was to determine the influence of ischemic preconditioning (IPC) on IR injury on jejunal epithelial layer. Wistar rats (n = 56) were divided in two experimental groups. IR group was subjected to 60 min ischemia of cranial mesenteric artery and followed by reperfusion periods: 1,4,8,24 h (IR1, IR4, IR8, IR24). Group with ischemic preconditioning (IPC+IR) was subjected to two subsequent ischemic attacks (12 min) with 10 min of reperfusion between them, and after 2nd attack ischemia was induced for 60 min followed by relevant reperfusion period. IPC showed the protective impact on the jejunal tissue architecture after 1 h reperfusion, when in IR1 group the highest and significant damage was observed (p < 0.001) in contrast to IPC+IR1 group. Histopathological damage of the intestine in pretreated groups was postponed to 4 h of reperfusion. Protective effect of IPC together with later accumulation of injury signs were confirmed by weaker impact on goblet cell (p < 0.001) and Paneth cell populations (p < 0.05).The increased cells proliferation in preconditioned groups came later, but stronger after 8 h of reperfusion (p < 0.001) and after 24 h of reperfusion still remained at the high activity level (p < 0.001). Our experimental results on the histopathological changes in the jejunum during ischemic preconditioning proved that IPC may have a positive effect on maintaining intestinal barrier function.  相似文献   

18.
Pretreatment with diazoxide, KATP channel opener, increases tissue tolerance against ischemia reperfusion (IR) injury. In clinical settings pretreatment is rarely an option therefore we evaluated the effect of post-ischemic treatment with diazoxide on skeletal muscle IR injury. Rats were treated with either saline, diazoxide (KATP opener; 40?mg/kg) or 5-hydroxydecanoate (5-HD; mitochondrial KATP inhibitor; 40?mg/kg) after skeletal muscle ischemia (3?h) and reperfusion (6, 24 or 48?h). Tissue contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activities, Bax and Bcl-2 protein expression and muscle histology were determined. Apoptosis was examined (24 and 48?h) after ischemia. IR induced severe histological damage, increased MDA content and Bax expression (24 and 48?h; p?<?0.01) and decreased CAT and SOD activities (6 and 24?h, p?<?0.01 and 48?h, p?<?0.05), with no significant effect on Bcl-2 expression. Diazoxide reversed IR effects on MDA (6 and 24?h; p?<?0.05), SOD (6 and 24?h; p?<?0.01) and CAT (6 and 48?h, p?<?0.05 and 24?h p?<?0.01) and tissue damage. Diazoxide also decreased Bax (24 and 48?h; p?<?0.05) and increased Bcl-2 protein expression (24 and 48?h; p?<?0.01). Post-ischemic treatment with 5-HD had no significant effect on IR injury. Number of apoptotic nuclei in IR and 5-HD treated groups significantly increased (p?<?0.001) while diazoxide decreased apoptosis (p?<?0.01). The results suggested that post-ischemic treatment with diazoxide decrease oxidative stress in acute phase which modulates expression of apoptotic proteins in the late phase of reperfusion injury. Involvement of KATP channels in this effect require further evaluations.  相似文献   

19.
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.  相似文献   

20.
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by body plethysmography. Moderate COPD (FEV1 50-80%) was present in 23, and severe COPD (FEV1 < 50%) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1+/-1.5 vs. 47.7+/-2.9 U/gHb, p<0.05, MDA: 2.4+/-0.1 vs. 2.1+/-0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号