首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the signaling pathways involved in the regulation of anti-inflammatory and pro-inflammatory responses in tuberculosis is extremely important in tailoring a macrophage innate response to promote anti-tuberculosis immunity in the host. Although the role of toll-like receptors (TLRs) in the regulation of anti-inflammatory and pro-inflammatory responses is known, the detailed molecular mechanisms by which the Mycobacterium tuberculosis bacteria modulate these innate responses are not clearly understood. In this study, we demonstrate that M. tuberculosis heat shock protein 60 (Mtbhsp60, Cpn60.1, and Rv3417c) interacts with both TLR2 and TLR4 receptors, but its interaction with TLR2 leads to clathrin-dependent endocytosis resulting in an increased production of interleukin (IL)-10 and activated p38 MAPK. Blockage of TLR2-mediated endocytosis inhibited IL-10 production but induced production of tumor necrosis factor (TNF)-α and activated ERK1/2. In contrast, upon interaction with TLR4, Mtbhsp60 remained predominantly localized on the cell surface due to poorer endocytosis of the protein that led to decreased IL-10 production and p38 MAPK activation. The Escherichia coli homologue of hsp60 was found to be retained mainly on the macrophage surface upon interaction with either TLR2 or TLR4 that triggered predominantly a pro-inflammatory-type immune response. Our data suggest that cellular localization of Mtbhsp60 upon interaction with TLRs dictates the type of polarization in the innate immune responses in macrophages. This information is likely to help us in tailoring the host protective immune responses against M. tuberculosis.  相似文献   

2.
IL-27, a heterodimeric cytokine of IL-12 family, regulates both innate and adaptive immunity largely via Jak-Stat signaling. IL-27 can induce IFN-γ and inflammatory mediators from T lymphocytes and innate immune cells. IL-27 has unique anti-inflammatory properties via both Tr1 cells dependent and independent mechanisms. Here the role and biology of IL-27 in innate and adaptive immunity are summarized, with special interest with immunity against Mycobacterium tuberculosis.  相似文献   

3.
Appropriate control of leukocyte recruitment and activation is a fundamental requirement for competent host defense and resolving inflammation. A pivotal event that defines the successful outcome of any inflammatory event is the transition from innate to acquired immunity. In IL-6 deficiency, this process appears defective, and a series of in vivo studies have documented important roles for IL-6 in both the resolution of innate immunity and the development of acquired immune responses. Within this review, particular attention will be given to the regulatory properties of the soluble IL-6 receptor and how its activity may affect chronic disease progression.  相似文献   

4.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

5.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

6.
Effective resolution of malaria infection by avoiding pathogenesis requires regulated pro- to anti-inflammatory responses and the development of protective immunity. TLRs are known to be critical for initiating innate immune responses, but their roles in the regulation of immune responses and development of protective immunity to malaria remain poorly understood. In this study, using wild-type, TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) mice infected with Plasmodium yoelii, we show that TLR9 and MyD88 regulate pro/anti-inflammatory cytokines, Th1/Th2 development, and cellular and humoral responses. Dendritic cells from TLR9(-/-) and MyD88(-/-) mice produced significantly lower levels of proinflammatory cytokines and higher levels of anti-inflammatory cytokines than dendritic cells from wild-type mice. NK and CD8(+) T cells from TLR9(-/-) and MyD88(-/-) mice showed markedly impaired cytotoxic activity. Furthermore, mice deficient in TLR9 and MyD88 showed higher Th2-type and lower Th1-type IgGs. Consequently, TLR9(-/-) and MyD88(-/-) mice exhibited compromised ability to control parasitemia and were susceptible to death. Our data also show that TLR9 and MyD88 distinctively regulate immune responses to malaria infection. TLR9(-/-) but not MyD88(-/-) mice produced significant levels of both pro- and anti-inflammatory cytokines, including IL-1β and IL-18, by other TLRs/inflammasome- and/or IL-1R/IL-18R-mediated signaling. Thus, whereas MyD88(-/-) mice completely lacked cell-mediated immunity, TLR9(-/-) mice showed low levels of cell-mediated immunity and were slightly more resistant to malaria infection than MyD88(-/-) mice. Overall, our findings demonstrate that TLR9 and MyD88 play central roles in the immune regulation and development of protective immunity to malaria, and have implications in understanding immune responses to other pathogens.  相似文献   

7.
Oncostatin M (OSM) is a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family that has been found to be involved in both pro- and anti-inflammatory responses in cell-mediated immunity. Maturation of dendritic cells (DCs) is crucial for initiation of primary immune responses and is regulated by several stimuli. In this study, the role of OSM in the phenotypic and functional maturation of DCs was evaluated in vitro. Stimulation with OSM upregulated the expression of CD80, CD86, MHC class I and MHC class II and reduced the endocytic capacity of immature DCs. Moreover, OSM induced the allogeneic immunostimulatory capacity of DCs by stimulating the production of the Th1-promoting cytokine IL-12. OSM also increased the production of IFN-γ by T cells in mixed-lymphocyte reactions, which would be expected to contribute to the Th1 polarization of the immune response. The expression of surface markers and cytokine production in DCs was mediated by both the MAPK and NF-κB pathways. Taken together, these results indicate that OSM may play a role in innate immunity and in acquired immunity by enhancing DCs maturation and promoting Th1 immune responses.  相似文献   

8.
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.  相似文献   

9.
IL-27 is a pleiotropic cytokine with both activating and inhibitory functions on innate and acquired immunity. IL-27 is expressed at sites of inflammation in cytokine-driven autoimmune/inflammatory diseases, such as rheumatoid arthritis, psoriasis, inflammatory bowel disease, and sarcoidosis. However, its role in modulating disease pathogenesis is still unknown. In this study, we found that IL-27 production is induced by TNF-α in human macrophages (MΦ) and investigated the effects of IL-27 on the responses of primary human MΦ to the endogenous inflammatory cytokines TNF-α and IL-1. In striking contrast to IL-27-mediated augmentation of TLR-induced cytokine production, we found that IL-27 suppressed MΦ responses to TNF-α and IL-1β, thus identifying an anti-inflammatory function of IL-27. IL-27 blocked the proximal steps of TNF-α signaling by downregulating cell-surface expression of the signaling receptors p55 and p75. The mechanism of inhibition of IL-1 signaling was downregulation of the ligand-binding IL-1RI concomitant with increased expression of the receptor antagonist IL-1Ra and the decoy receptor IL-1RII. These findings provide a mechanism for suppressive effects of IL-27 on innate immune cells and suggest that IL-27 regulates inflammation by limiting activation of MΦ by inflammatory cytokines while preserving initial steps in host defense by augmenting responses to microbial products.  相似文献   

10.
IL-12 and Viral Infections   总被引:2,自引:0,他引:2  
Interleukin-12 activates natural killer cells and promotes the differentiation of Th1 CD4+ cells; it is a critical factor in viral immunity. IL-12 is secreted by antigen presenting cells including dendritic cells, macrophages and astrocytes, both in tissues and in secondary lymphoid organs. Experimental studies have shown that administration of the cytokine rapidly activates both innate and specific immune responses; this results in enhanced host cellular responses and generally, promotes clearance of virus and host recovery from infection. The observations of many laboratories, studying viral immunity to both RNA and DNA based pathogens, are summarized.  相似文献   

11.
Glucocorticoids have long been recognized as powerful anti-inflammatory compounds that are one of the most widely prescribed classes of drugs in the world. However, their role in the regulation of innate immunity is not well understood. We sought to examine the effects of glucocorticoids on the NOD-like receptors (NLRs), a central component of the inflammasome and innate immunity. Surprisingly, we show that glucocorticoids induce both NLRP3 messenger RNA and protein, which is a critical component of the inflammasome. The glucocorticoid-dependent induction of NLRP3 sensitizes the cells to extracellular ATP and significantly enhances the ATP-mediated release of proinflammatory molecules, including mature IL-1β, TNF-α, and IL-6. This effect was specific for glucocorticoids and dependent on the glucocorticoid receptor. These studies demonstrate a novel role for glucocorticoids in sensitizing the initial inflammatory response by the innate immune system.  相似文献   

12.
IL-12 plays a central role in both innate and acquired immunity and has been demonstrated to potentiate the protective immunity in several experimental vaccines. However, in this study, we show that IL-12 can be detrimental to the immune responses elicited by a plasmid DNA vaccine. Coadministration of the IL-12-expressing plasmid (pIL-12) significantly suppressed the protective immunity elicited by a plasmid DNA vaccine (pE) encoding the envelope protein of Japanese encephalitis virus. This suppressive effect was associated with marked reduction of specific T cell proliferation and Ab responses. A single dose of pIL-12 treatment with plasmid pE in initial priming resulted in significant immune suppression to subsequent pE booster immunization. The pIL-12-mediated immune suppression was dose dependent and evident only when the IL-12 gene was injected either before or coincident with the pE DNA vaccine. Finally, using IFN-gamma gene-disrupted mice, we showed that the suppressive activity of the IL-12 plasmid was dependent upon endogenous production of IFN-gamma. These results demonstrate that coexpression of the IL-12 gene can sometimes produce untoward effects to immune responses, and thus its application as a vaccine adjuvant should be carefully evaluated.  相似文献   

13.
14.
Cryptococcosis is an opportunistic fungal infectious disease that often occurs in severely immunocompromised patients. Host defence against the causative microorganism is largely mediated by cellular immunity, and Th1 cytokines, such as IFN-gamma, play central roles in the host protective responses. IL-12 and IL-18 activate the synthesis of IFN-gamma by innate immune cells, including NK, NKT and gamma delta T cells and promote the differentiation of Th1-type acquired immune responses. Recently, NKT cells, which are involved in the recognition of glycolipid antigens, have attracted much attention based on their potent immunomodulating activities. Several studies have reported the role of this particular component of innate immune responses in tumor immunity and pathogenesis of autoimmune diseases. In this review, I outline the recent findings on the role of NKT cells in host defence against infectious microorganisms, with a special focus on our data emphasizing the importance of this subset of immunocytes in the development of acquired as well as early host protection against cryptococcal infection.  相似文献   

15.
We have previously found that epiregulin, a member of epidermal growth factor superfamily, is involved in proinflammatory cytokine production in bone marrow-derived macrophages. In this report, to further assess the role of epiregulin in innate immunity, we measured IL-6 production levels upon lipopolysaccharide and peptidoglycan stimulation in antigen presenting cells including macrophages and dendritic cells. Our analyses using epiregulin-deficient mice with mixed and inbred genetic backgrounds revealed that epiregulin deficiency results in the reduction of IL-6 production levels in both cell types upon peptidoglycan stimulation, and that the extent of this reduction is more evident under the BALB/c background compared with the C57BL/6J background. These results indicated that epiregulin may have a critical role in the regulation of peptidoglycan-mediated proinflammatory cytokine production in antigen presenting cells and innate immunity.  相似文献   

16.
半乳糖凝集素1的免疫功能   总被引:2,自引:0,他引:2  
半乳糖凝集素为S型凝集素,因其可特异性识别β-半乳糖苷键而得名。半乳糖凝集素1是最早发现的半乳糖凝集素家族成员,它在固有免疫与适应性免疫中均发挥着重要的作用。在固有免疫中,半乳糖凝集素1调节中性粒细胞、肥大细胞、巨噬细胞的功能,进而调节免疫反应;在适应性免疫中,半乳糖凝集素1对T细胞有重要的免疫调节功能,在T细胞存活、T细胞免疫调节、T细胞免疫疾病、炎症、肿瘤发生发展及免疫逃逸中都扮演着重要的角色。  相似文献   

17.
18.
Macrophages are now well recognized to have a critical role in both innate and acquired immunity. The sentinel macrophage function is highly regulated and serves to allow for intrinsic plasticity of the innate immune responses to potential environmental signals. However, the mechanisms underlying the dynamic properties of the cellular arm of innate immunity are poorly understood. Therefore, we have conducted a series of in vitro studies to evaluate the contribution of immunoregulatory cytokines, such as IFN-gamma, IL-10, and IL-12, in modulation of macrophage responses. We found that macrophages from IFN-gamma knockout (IFN-gamma(-/-)) mice exhibit only marginal LPS-induced TNF-alpha, IL-12, and NO responses, all of which can be fully restored in the presence of rIFN-gamma. Pretreatment with substimulatory LPS concentrations led to reprogramming of IFN-gamma(-/-) macrophage responses in a dose-dependent manner that manifested by an increased TNF-alpha and IL-12, but not NO, production upon the subsequent LPS challenge. These reprogramming effects were substantially attenuated and profoundly enhanced in macrophages from IL-12(-/-) and IL-10(-/-) mice, respectively, as compared with those modulated in macrophages from the congenic wild-type mice. LPS-dependent reprogramming was also fully reproduced in macrophages isolated from SCID mice after immunodepletion of NK cells. Our data strongly imply that cytokine (TNF-alpha and IL-12), but not NO, responses in macrophages may, at least in part, be governed by an autocrine IFN-gamma-independent regulatory mechanism reciprocally controlled by IL-10 and IL-12. This mechanism may serve as an alternative/coherent pathway to the canonical IFN-gamma-dependent induction of antimicrobial and tumoricidal activity in macrophages.  相似文献   

19.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

20.
Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号