首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

2.
The X-ray structure of sickling deer type III hemoglobin, solved by the molecular replacement method and refined to an R value of ~25%, has been used to determine the mode of molecular packing and the residues involved in the intermolecular contacts between the hemoglobin tetramers in the crystalline state. The molecules pack in linear arrays (“fibrils”), with adjacent fibrils displaced ~27 Å from one another along the long axis of the arrays. A view down this axis shows an hexagonal network of six fibrils surrounding a central solvent cavity (each hexameric unit is termed a fiber) with adjacent fibers sharing a common wall of fibrils. Contacts less than 5 Å are observed between the following subunits of different molecules: α1α1, α1α2, α1β1, α1β2, α2β1, α2β2, β2β2, in which the primes refer to adjacent molecules.  相似文献   

3.
From bulbs of Tristagma uniflorum the known sapogenins tigogenin, neotigogenin and (20S,22R,25S)-5α-spirostan-3β,25-diol, as well as the new (20S,22R,25R)-5α-spirostan-3β,25-diol, (20S,22S,25S)-5α-furostan-22,25-epoxy-3β,26-diol and (20S,22S,25R) -5α-furostan-22,25-epoxy-3β,26-diol, were isolated and characterized by spectroscopic (IR, 1H NMR, 13C NMR, MS) methods.  相似文献   

4.
Summary Stable variants having increased resistance to growth inhibition by caffeine were obtained from four different absolute, amino acid auxotrophs of Candida albicans. Differences in growth rates and expression of auxotrophy between the resistant (CafR) variants and their sensitive (CafS) progenitors suggest that caffeine resistance arises through suppressor mutations which affect the fidelity of messenger RNA translation.Both CafS and CafR strains of C. albicans are more susceptible to inactivation by ultraviolet radiation (uv) when grown at 37°C rather than 25°C following exposure. Post irradiation growth on caffeine potentiates ultraviolet inactivation of all CafS strains at both temperatures. Depending on its origin, a CafR strain (i) may show greater, lesser or the same intrinsic susceptibility to uv inactivation as its CafS parent at 25°C or at 37°C and (ii) may or may not be refractory to post-irradiation contact with caffeine. CafR variants independently isolated from a given auxotroph are alike in inactivational responses whereas those obtained from different auxotrophs are dissimilar. This implies that different suppressor mutations are unique in the way they affect expression of potentially lethal uv damage and that only one kind of suppressor is obtained by selection for caffeine resistance in a particular auxotroph.The histidine requiring CafR strain WB-2CR is much more resistant to uv inactivation that its CafS parent WB-2. Moreover, post-irradiation survival of WB-2CR is unaffected by caffeine. However, WB-2CR and WB-2 are equally susceptible to uv-induced reversion to prototrophy. In both strains, caffeine does not enhance uv-induced reversion at 25°C or 37°C and exhibits an antimutagenic activity at high uv dosage at 37°C.The findings reinforce previously reported indications that, in C. albicans, (i) caffeine-sensitive excision-repair of uv damaged DNA does not occur and (ii) caffeine potentiates uv cellular inactivation by disturbing post-irradiation synthesis of protein essential for recovery from non-genetic damage.  相似文献   

5.
The configurations of (6′R)-β,ε-carotene, (3′R,6′R)-β,ε-caroten-3′-ol (α-cryptoxanthin), (3R,3′R,6′R)-β,ε-carotene-3,3′-diol (lutein), (3R)-β,β-caroten-3-ol (β-cryptoxanthin), (3R,3′R)-β,β-carotene-3,3′-diol (zeaxanthin) and all-trans (3S,5R,6S,3′R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol (antheraxanthin) were established by CD and 1H NMR studies. The red algal carotenoids consequently possessed chiralities at each chiral center (C-3, C-5, C-6, C-3′, C-6′), corresponding to the chiralities established for the same carotenoids in higher plants. Two post mortem artifacts from Erythrotrichia carnea were assigned the chiral structures (3S,5R,8R,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8R)-mutatoxanthin] and (3S,5R,8S,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8S)-mutatoxanthin]. This is the first well documented report of a naturally occurring β,ε-caroten-3′-ol (1H NMR, CD, chemical derivatization).  相似文献   

6.
(22R,23R)-22,23-dihydroxystigmast-4-en-3-one, (22R,23R)-22,23-dihydroxystigmast-4-en-3,6-dione, (22R,23R)-3β,5α,6β,22,23-pentahydroxystigmastane, (22R,23R)-5α,6α-oxido-3β,22,23-trihydroxystigmastane, (22R,23R)-5β,6β-oxido-3β,22,23-trihydroxystigmastane, and (22R,23R)-3β,6β,22,23-tetrahydroxystigmast-4-ene were synthesized. Their cytotoxicities were comparatively studied using the MCF-7 line of carcinoma cells of human mammary gland and cells of human hepatoma of the Hep G2 line.  相似文献   

7.
(22S,23S)-22,23-Epoxysitosterol, (22R,23R)-22,23-epoxysitosterol, (22S, 23S)-22,23-epoxy-7-ketositosterol, (22R,23R)-22,23-epoxy-7-ketositosterol, (22S, 23S)-22,23-epoxy-7α-hydroxysitosterol, (22S,23S)-22,23-epoxy-7β-hydroxysitosterol, and (22R, 23R)-22,23-epoxy-7β-hydroxysitosterol were synthesized. Their 1H and 13C NMR and the mass spectra of their trimethylsilyl derivatives were studied.  相似文献   

8.
Roots of Podophyllum hexandrum and P. peltatum both contain (1R,2R,3R)-desoxypodophyllotoxin [(1α,2α,3β)- desoxypodophyllotoxin] and the previously unreported (1R,2R,3R)-podophyllotoxone [(1α,2α,3α)-podophyllotoxone]. Thermal isomerization of (loc,2ct,3fl)-podophyllotoxone readily occurs to yield (1α,2α,3α)-podophyllotoxone (isopicropodophyllone) with traces of (1α,2β,3β)-podophyllotoxone (picropodophyllone). Small amounts of (1α,2α,3α)-podophyllotoxone were also present in dried roots of P. hexandrum and P. peltatum. A more systematic nomenclature for podophyllotoxin derivatives and other aryltetralin lignans using α,β conventions is proposed.  相似文献   

9.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

10.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

11.
Thirteen sesquiterpenoids were isolated from the EtOH extract of the aerial parts of Chloranthus elatior. On the basis of spectroscopic methods, the structures of the new naturally occurring compounds were elucidated to be (1R,4R,5R,8S,10R)-1-hydroxy-4-methoxy-eudesm-7(11)-en-12,8-olide (1), 1αH,5βH,6αH,7αH-4β,10β,15-trihydroxyaromadendrane (2), and (1S,4S,5S,6R,7R,10S)-1,4-dihydroxymaaliane (3), respectively.  相似文献   

12.
Three new withanolides have been isolated from hybrids obtained by crossing a chemotype of Withania somnifera received from South Africa and chemotype II originating in Israel. The compounds have been characterized as 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-24-enolide, 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide, and 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2-enolide. The major steroid of the plant is withanolide D, while the other known withanolides present are 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R,24S,25R-witha-2-enolide and withaferin A. The structures assigned to the new compounds are based on spectral evidence, analysis of their fragmentation under electron impact, and on chemical correlation with known compounds. The formation of these withanolides in this new hybrid is discussed briefly.  相似文献   

13.
Five khayanolides (1-O-acetylkhayanolide B 1, khayanolide B 2, khayanolide E 3, 1-O-deacetylkhayanolide E 4, 6-dehydroxylkhayanolide E 5) were isolated from the stem bark of African mahogany Khaya senegalensis (Meliaceae). Their structures and absolute configurations were determined through extensive spectroscopic analyses including MS, NMR, and single-crystal X-ray diffraction experiments. The results established that two previously reported khayanolides, 1α-acetoxy-2β,3α,6,8α,14β-pentahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 6 and 1α,2β,3α,6,8α,14β-hexahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 7, were, in fact, 1-O-acetylkhayanolide B 1 and khayanolide B 2, and that the two reported phragmalin derivatives, methyl 1α-acetoxy-6,8α,14β,30β-tetrahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 8 and methyl 1α,6,8α,14β,30β-pentahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 9, were, in fact, khayanolide E 3 and 1-O-deacetylkhayanolide E 4, respectively. Based on the results from this study and consideration of the biogenetic pathway, the methyl 6-hydroxyangolensate in African mahogany K. senegalensis should have a C-6 S configuration while methyl 6-hydroxyangolensate in genuine mahogany Swietenia species should have a C-6 R configuration.  相似文献   

14.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

15.
(25R)-26-Amino-cholesterol-[7α-3H], (25R)-26-amino-5-cholestene-3β,16β-diol-[7α-3H] and (25R)-26-acetylamino-5-cholestene-3β,16β-diol-[7α-3H] administered to Solanum laciniatum were converted into solasodine. The results indicate that in the biosynthesis of solasodine the introduction of nitrogen occurs immediately after the hydroxylation at C-26 and before a further oxidation of the side chain of cholesterol. The next step after the amination at C-26 is not hydroxylation at the 16β-position but probably the functionalization of C-22.  相似文献   

16.
Seven steroidal lactones of the withanolide series have been isolated as minor constituents of the leaves of Withania somnifera Dun. (Solanaceae) chemotype I, along with the major component withaferin A. Structures have been assigned to the new compounds: withanolide N (17α,27-dihydroxy-1-oxo-20R,22R-witha-2,5,14,24-tetraenolide) (6a) and withanolide O (4β,17α-dihydroxy-1-oxo-20R,22R-witha-2,5,8(14),24-tetraenolide) (7a). Similarly the leaves of W. somnifera chemotype II afforded three new withanolides along with the major component withanolide D (9a) and trace amounts of withanolide G (10). The new compounds are: 27-hydroxywithanolide D(4β,20α,27-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (11a), 14α-hydroxywithanolide D (4β,14α,20α-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (12a) and 17α-hydroxywithanolide D (4β,17β,20α-trihydroxy-1-oxo-5β,6β-epoxy-20S,22R-witha-2,24-dienolide) (13a). Whereas all the withanolides of chemotype I are unsubstituted at C-20 (20α-H), those of chemotype II possess an OH at this position (20α-OH).  相似文献   

17.
Both enantiomers of 3α,6β-dibenzoyloxytropane (1) have been prepared from optical active 6β-hydroxyhyoscyamines establishing their absolute configurations as (?)-(3R,6R) and (+)-(3S,6S)-dibenzoyloxytropane. Independent stereochemical confirmation was obtained by vibrational circular dichroism measurements, since bands characteristic of (3R,6R) and (3S,6S) configurations of tropanediols derivatives were observed. In addition, a chiral HPLC method was developed for determining absolute configurations of tropane-related natural substances at the microgram (μg) level. The complete 1H NMR characterization of the scaffold of 1 is also reported.  相似文献   

18.
《Phytochemistry》1987,26(6):1801-1804
The structure of withaminimin, a new ergostane-type steroid from Physalis minima, was established by spectral analysis (1H and 13C NMR, MS) and chemical transformations, as (20S,22R)-15α-acetoxy-5α,6β,14α-trihydroxy-1-oxowitha-2,16,24-trienolide. An unusual MH2O+ quasi-molecular ion was observed in the chemical ionization mass spectrum of the natural product.  相似文献   

19.
Ninhydrin-negative conjugates of basic amino acids were isolated from rat urine and were characterized. The following conjugates of basic amino acids are the compounds newly identified in animal urine specimens, Nα-acetyl-Nπ-methylhistidine, Nα-(N-acetyl-β-alanyl)histidine (N-acetylcarnosine), Nα-acetyl-NG,N′G-dimethylarginine, Nα-acetyl-NG,NG-dimethylarginine, and Nα-acetyl-N?,N?,N?-trimethyllysine.  相似文献   

20.
Two new steroid glycosides from the starfish Fromia milleporella collected in the Seychelles were isolated and characterized: milleporoside A, (20R, 24R)-29-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-ethyl-5α-cholestane-3β,4β,6α,8,15β,16β,29-heptaol, and milleporoside B, (20R, 24R)-(22E)-28-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,28-heptaol. The structures of the glycosides were determined from their spectra and a comparison with spectral characteristics of known compounds. These compounds exhibit a moderate cytostatic activity toward the embryos of the sea urchin Strongylocentrotus intermedius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号