首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many recent studies have established the eosinophil as a primary effector cell in the pathology of allergic diseases. However, relatively little is known about the mechanisms by which eosinophils accumulate and are activated at local sites of tissue inflammation in allergic or other eosinophil-dependent pathologic states. Because the adherence of leukocytes to vascular endothelial cells (VEC) is a critical initial event in eosinophil infiltration, we have studied the interaction of purified human eosinophils with cultured human umbilical vein endothelial cells. Treatment of VEC with stimuli known to activate endothelial cells, including purified human IL-1, rTNF-alpha, bacterial endotoxin LPS, and the tumor-promoting phorbol diester 12-O-tetradecanoylphorbol-13-acetate resulted in time- and dose-dependent increases (from two- to fourfold) in adhesiveness for eosinophils. Adherence induced by optimal concentrations of IL-1 (2 U/ml), TNF (1 micrograms/ml), and LPS (1 microgram/ml) is dependent upon the CD18 leukocyte cell surface adherence glycoproteins, because a mAb (60.3) directed against the common beta-subunit of the complex inhibits adherence induced by these stimuli. Several agents directly activated eosinophils to display increased adhesiveness to both VEC and gelatinized plates. The bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalanine (10(-8) to 10(-6) M), TNF (1 to 1000 ng/ml), and 12-O-tetradecanoyl-phorbol-13-acetate (0.3 to 3 ng/ml) all increased eosinophil binding to VEC by two to fivefold. Platelet-activating factor (PAF; 10(-8) to 10(-6) M), but not lyso-PAF, caused approximately a twofold increase in eosinophil binding to both VEC and gelatinized tissue culture plates, suggesting that activation of eosinophils may be responsible for the known ability of PAF to induce eosinophilic responses. These results suggest that the initiation of an eosinophilic infiltrate in vivo can result from activation of endothelial cells, activation of eosinophils, or activation of both cell types.  相似文献   

2.
The mechanism leading to selective accumulation of eosinophils in allergic inflamed tissue is still unknown. In this article, transendothelial migration of circulating eosinophils from normal and allergic individuals is characterized by means of human umbilical vein endothelial cells cultivated on extracellular matrix from human fibroblasts. IL-4 pretreatment of these vascular constructs induced adherence and impressive layer penetration of eosinophils but not of neutrophils. For layer penetration, blood eosinophils from nonallergic donors needed in vitro priming by granulocyte/macrophage-CSF, IL-3, or IL-5. In contrast, freshly isolated blood eosinophils from a group of patients with atopic dermatitis spontaneously penetrated IL-4-activated vascular constructs. The here described selective pathway of eosinophil transmigration was 1) specifically induced by IL-4; 2) inhibited by the IL-4 specific, neutralizing mAb 8F12; and 3) dependent upon endothelial mRNA synthesis. Both eosinophil adherence and transmigration were present at an IL-4 concentration of 1 U/ml. The effect of endothelial preincubation with IL-4 culminated at 16 h and persisted up to 48 h. A linear increase of subendothelial accumulating eosinophils was observed within 2 h, reaching almost 100% after 4 h of coincubation. From inhibition experiments using different mAb, we conclude that the integrins CD11a/CD18, CD11b/CD18, and very late Ag-4 (CDw49d/CD29) are involved in this selective pathway of eosinophil transmigration. Taken together, this study demonstrates a novel mechanism which allows in vitro or in vivo primed eosinophils to leave the vascular compartment without influencing emigration of neutrophils.  相似文献   

3.
The present studies were performed to explore potentially selective mechanisms of leukocyte adhesion in an attempt to understand how preferential recruitment of eosinophils and basophils might occur during allergic and other inflammatory reactions. Stimulation of human vascular endothelial cells for 24 h with IL-4 (30 to 1,000 U/ml) induced adhesion for eosinophils (up to approximately four-fold of control) and basophils (up to approximately twofold of control) but not neutrophils (less than 125% of control). Analysis of endothelial expression of adhesion molecules by flow cytometry revealed that IL-4 treatment induced vascular cell adhesion molecule-1 (VCAM-1) expression without significantly affecting the expression of other adhesion molecules, namely endothelial-leukocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1). The concentration-response curve for IL-4-induced VCAM-1 expression paralleled that for adhesion. Endothelial cells stimulated with IL-4 expressed adhesive properties for eosinophils by 3 h; the response increased steadily during a 24-h time course study. Eosinophils and basophils adhered to plates coated with a recombinant form of VCAM-1. This adhesion was blocked with antibodies to VCAM-1 but not ELAM-1. mAb directed against either VCAM-1 or VLA-4 inhibited (by approximately 75%) the binding of eosinophils and basophils to IL-4-stimulated endothelial cells. Because VLA-4 and VCAM-1 have been demonstrated to bind to each other in other adhesion systems, these results suggest that IL-4 stimulates eosinophil and basophil adhesion by inducing endothelial cell expression of VCAM-1 which binds to eosinophil and basophil VLA-4. The lack of expression of VLA-4 on neutrophils and the failure of IL-4 to stimulate neutrophil adherence support this conclusion. It is proposed that local release of IL-4 in vivo in allergic diseases or after experimental allergen challenge may partly explain the enrichment of eosinophils and basophils (vs neutrophils) observed in these situations.  相似文献   

4.
111In-Labeled eosinophils from mildly eosinophilic subjects have been examined for their capacity to adhere to cultured human umbilical vein endothelial cells. In assay buffer alone, 32.0% +/- 2.6 eosinophils adhered spontaneously to endothelial cells. Platelet-activating factor (PAF) (1-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) at concentrations as low as 10(-9) M increased this adherence to a level of 46.7% +/- 2.0. The effects of PAF were confirmed to be on eosinophils by parallel adherence assays done on serum-coated plastic plates where comparably enhanced adhesion of the eosinophils was seen. Lyso-PAF, the biologically inactive precursor/metabolite of PAF, had no stimulatory properties. FMLP caused an increase in eosinophil adherence, comparable to that of PAF, but only at high concentrations (10(-6) to 10(-7) M). Further examination of eosinophil subpopulations separated on metrizamide gradients indicated that "hypodense" eosinophils had a significantly higher ability to adhere spontaneously to endothelial cells than "normal" dense eosinophils, (35.5% +/- 4.2 vs 23.8% +/- 2.5, respectively) and could be stimulated with PAF to higher levels, although the magnitude of stimulation was similar for both populations. A mouse mAb TS1/18 to the common beta-subunit of the Mac-1 cell surface glycoprotein complex (CDw18) reduced by up to 94.6% the PAF-induced increase in adherence, but had no effect on the spontaneous adhesion. Eosinophils were also shown by cytofluorography to be capable of binding the TS1/18 antibody on their cell surface, and in some experiments to exhibit an increased expression of the Mac-1 complex on stimulation with PAF. These studies indicate that eosinophils are capable of binding to endothelial cells in culture, that PAF is a potent stimulator of eosinophil adherence, and that the Mac-1 complex has a critical role in this adhesion process.  相似文献   

5.
Airway eosinophilia plays a major role in the pathogenesis of asthma with the inhibition of apoptosis by GM-CSF and IL-5 proposed as a mechanism underlying prolonged eosinophil survival. In vivo and ex vivo studies have indicated the capacity of interventions that drive human eosinophil apoptosis to promote the resolution of inflammation. Far less is known about the impact of transendothelial migration on eosinophil survival, in particular, the capacity of endothelial cell-derived factors to contribute toward the apoptosis-resistant phenotype characteristic of airway-resident eosinophils. We examined the effects of conditioned medium from human pulmonary artery endothelial cells (HPAEC-CM) on eosinophil apoptosis in vitro. HPAEC-CM inhibited eosinophil, but not neutrophil apoptosis. This effect was specific to HPAECs and comparable in efficacy to the survival effects of GM-CSF and IL-5. The HPAEC survival factor was shown, on the basis of GM-CSF, IL-5, and IL-3 detection assays, Ab neutralization, and sensitivity to PI3K inhibition, to be clearly discrete from these factors. Gel filtration of HPAEC-CM revealed a peak of eosinophil survival activity at 8-12 kDa, and PCR confirmed the presence of mRNA for CCL5, CCL11, CCL24, CCL26, and CCL27 in the HPAECs. The CCR3 antagonist GW782415 caused a major inhibition of the HPAEC-CM-induced survival effect, and Ab neutralization of individual CCR3 chemokines revealed CCL11 as the major survival factor present in the HPAEC-CM. Furthermore, chemokine Ab arrays demonstrated up-regulation of CCL11 in HPAEC-CM. These data demonstrate the capacity of HPAECs to generate CCR3 agonists and the ability of CCL11 to inhibit human eosinophil apoptosis.  相似文献   

6.
Eosinophils play a crucial role in allergic reactions and asthma. They are also involved in responses against parasites, in autoimmune and neoplastic diseases, and in fibroses. There is increasing evidence that angiogenesis plays an important role in these processes. Since eosinophils are known to produce angiogenic mediators, we have hypothesized a direct contribution of these cells to angiogenesis. The effect of human peripheral blood eosinophil sonicates on rat aortic endothelial cell proliferation (in vitro), rat aorta sprouting (ex vivo) and angiogenesis in the chick embryo chorioallantoic membrane (in vivo) have been investigated. To determine whether eosinophil-derived vascular endothelial growth factor influences the eosinophil pro-angiogenic activity, eosinophil sonicates were incubated with anti-vascular endothelial growth factor antibodies and then added to the chorioallantoic membrane. Vascular endothelial growth factor mRNA expression and vascular endothelial growth factor receptor density on the endothelial cells were also evaluated. Eosinophils were found to enhance endothelial cell proliferation and to induce a strong angiogenic response both in the aorta rings and in the chorioallantoic membrane assays. Pre-incubation of eosinophil sonicates with anti-vascular endothelial growth factor antibodies partially reduced the angiogenic response of these cells in the chorioallantoic membrane. Eosinophils also increased vascular endothelial growth factor mRNA production on endothelial cells. Eosinophils are able to induce angiogenesis and this effect is partially mediated by their pre-formed vascular endothelial growth factor. This strongly suggests an important role of eosinophils in angiogenesis-associated diseases such as asthma.  相似文献   

7.
The role of the eosinophil as an active proinflammatory cell in asthma and other allergic disorders has been well established. Glucocorticosteroids have long been used therapeutically as antiinflammatory agents in a variety of disease states where eosinophilia is a prominent feature. Although glucocorticoids are known to reduce tissue and circulating eosinophil numbers, the mechanisms by which they do so have not been clearly elucidated. Culture of eosinophils in vascular endothelial cell supernatants (VEC SUP) induces phenotypic and functional changes and prolongs the survival of the eosinophils. The survival-promoting activity in VEC SUP was shown to be granulocyte-macrophage CSF (GM-CSF) by neutralization with specific antibody. The potent glucocorticosteroid, dexamethasone (DEX), inhibited the prolongation of eosinophil survival caused by culture in either VEC SUP or human rGM-CSF. DEX (10(-6) M) exerted a direct survival-inhibitory effect on the eosinophil by the 4th day in culture in VEC SUP. This survival-inhibitory effect was dependent on the concentration of DEX (10(-10)-10(-6) M). Other glucocorticoids, including prednisolone (10(-7), 10(-6) M) and hydrocortisone (10(-7), 10(-6) M) also inhibited survival. The rank order of potency of the steroids indicates that this effect is mediated by a glucocorticoid receptor. This conclusion is supported by the failure of the sex steroids testosterone (10(-8)-10(-6) M) or beta-estradiol (10(-6) M) to inhibit eosinophil survival in the presence of VEC SUP. The effect of glucocorticoids on eosinophils is not a simple direct toxic effect because it was reversed by higher concentrations of GM-CSF. DEX shifted the GM-CSF dose-response curve for survival approximately fivefold to the right. GM-CSF induced a shift in eosinophil buoyant density which was partially blocked by DEX. These results suggest that glucocorticoids may inhibit elements of cytokine "priming" of eosinophils and that the eosinophilopenic effects of glucocorticoids may result in part from a direct effect on the eosinophil within a regulatory system involving cytokines.  相似文献   

8.
Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  相似文献   

9.
Eosinophils, through their ability to generate an array of potent mediators, are thought to be the major effector cells in a number of conditions, including parasitic infection, asthma, and other allergic diseases. The mechanism(s) by which eosinophils, as opposed to neutrophils, accumulate at inflammatory sites is unknown. One possible mechanism would be an eosinophil-specific pathway of adhesion to vascular endothelium. In this study we have demonstrated that human eosinophils, but not neutrophils, constitutively express alpha 4 beta 1 (CD49d/CD29). Expression was not increased on low density eosinophils or normal density cells stimulated with platelet-activating factor. Eosinophils, but not neutrophils, specifically adhered to COS cells transfected with vascular adhesion molecule-1 in a alpha 4 beta 1-dependent manner. Eosinophil, but not neutrophil, adhesion to IL-1 stimulated human umbilical vascular endothelial cells was significantly inhibited by alpha 4 beta 1 mAb at both 5 h (p less than 0.05) and 20 h (p less than 0.001). Inhibition of both resting and platelet-activating factor-(10(-7) M) stimulated eosinophil adhesion was observed. We conclude that the alpha 4 beta 1/vascular adhesion molecule-1 adhesion pathway may be involved in specific eosinophil, as opposed to neutrophil, migration into sites of eosinophilic inflammation.  相似文献   

10.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

11.
The low-affinity IgG Fc receptor, FcgammaRII (CD32), mediates various effector functions of lymphoid and myeloid cells and is the major IgG Fc receptor expressed by human eosinophils. We investigated whether FcgammaRII regulates both cell survival and death of human eosinophils. When cultured in vitro without growth factors, most eosinophils undergo apoptosis within 96 h. Ligation of FcgammaRII by anti-CD32 mAb in solution inhibited eosinophil apoptosis and prolonged survival in the absence of growth factors. Cross-linking of human IgG bound to FcgammaRII by anti-human IgG Ab or of unoccupied FcgammaRII by aggregated human IgG also prolonged eosinophil survival. The enhanced survival with anti-CD32 mAb was inhibited by anti-granulocyte-macrophage-CSF (GM-CSF) mAb, suggesting that autocrine production of GM-CSF by eosinophils mediated survival. In fact, mRNA for GM-CSF was detected in eosinophils cultured with anti-CD32 mAb. In contrast to mAb or ligands in solution, anti-CD32 mAb or human IgG, when immobilized onto tissue culture plates, facilitated eosinophil cell death even in the presence of IL-5. Cell death induced by these immobilized ligands was accompanied by DNA fragmentation and was inhibited when eosinophil beta2 integrin was blocked by anti-CD18 mAb, suggesting that beta2 integrins play a key role in initiating eosinophil apoptosis. Thus, FcgammaRII may pivotally regulate both survival and death of eosinophils, depending on the manner of receptor ligation and beta2 integrin involvement. Moreover, the FcgammaRII could provide a novel mechanism to control the number of eosinophils at inflammation sites in human diseases.  相似文献   

12.
BACKGROUND: Understanding the processes that control selective eosinophilia is of fundamental importance in a variety of human diseases (e.g., allergies, parasitic infections, malignancy). Interleukin 5, an eosinophil-specific growth and activating factor, and eotaxin appear to collaborate in this process. Eotaxin is a recently described chemotactic factor that belongs to the C-C (or beta) chemokine family and has been implicated in animal and human eosinophilic inflammatory states. We have recently reported the molecular characterization of murine eotaxin and now report the biological properties of purified recombinant murine eotaxin in vitro and in vivo in the presence or absence of interleukin 5 (IL-5) in mice. MATERIALS AND METHODS: Murine eotaxin was expressed in bacteria and purified by affinity chromatography and HPLC. Activity was tested in vitro by examining chemotactic and calcium flux responses of purified murine leukocytes. Additionally, desensitization of calcium flux responses to other chemokines, eosinophil survival assays, and basophil histamine release were examined. Finally, eotaxin was delivered to wild-type or IL-5 transgenic mice and the host response was examined. RESULTS: Eotaxin had activity only when the recombinant molecule had the native mature amino terminus and contained the first 25 amino acids of the mature protein. It was active in vitro at an effective concentration between 10 and 100 ng/ml in both chemotaxis and calcium flux assays toward eosinophils, but not macrophages or neutrophils. Furthermore, intranasal or subcutaneous application of eotaxin selectively recruited large numbers of eosinophils into the mouse lung and skin, respectively, only in the presence of interleukin 5. Macrophage inflammatory protein-1 alpha, a related C-C chemokine active on eosinophils, and eotaxin were not able to cross-desensitize. Eotaxin had no affect on the in vitro survival of eosinophils and did not induce basophil histamine release. CONCLUSIONS: Mouse eotaxin is an eosinophil specific chemoattractant that has a markedly enhanced effect in vivo in the presence of another eosinophil selective cytokine IL-5, and utilizes a signal transduction receptor pathway that is distinct from that utilized by macrophage inflammatory protein-1 alpha. This data suggests that the development of tissue eosinophilia in vivo involves a two-step mechanism elicited by interleukin 5 and eotaxin.  相似文献   

13.
Asthma is characterized by an airway inflammatory infiltrate that is rich in eosinophilic leukocytes. Cellular fibronectin and VCAM-1, ligands for alpha4 integrins, are enriched in the fluid of airways of allergic patients subjected to Ag challenge. We therefore hypothesized that ligands of alpha4 integrins can promote eosinophil survival independent of cell adhesion. Cellular fibronectin and VCAM-1 increased viability of human peripheral blood eosinophil in a dose- and time-dependant manner whether the ligand was coated on the culture well or added to the medium at the beginning of the assay. Eosinophils cultured with cellular fibronectin were not adherent to the bottom of culture wells after 3 days. Treatment with mAb Fib 30 to beta7, but not mAb P4C10 or TS2/16 to beta1, increased eosinophil survival. The increased survival of eosinophils incubated with Fib 30 was blocked by Fab fragments of another anti-beta7 mAb, Fib 504. Eosinophils incubated with soluble cellular fibronectin or mAb Fib 30 for 6 h demonstrated a higher level of GM-CSF mRNA than eosinophils incubated with medium alone. Addition of neutralizing mAb to GM-CSF during incubation, but not mAbs to IL-3 or IL-5, reduced the enhancement of eosinophil survival by soluble cellular fibronectin or mAb Fib 30 to control levels. Thus, viability of eosinophils incubated with cellular fibronectin or VCAM-1 is due to engagement, probably followed by cross-linking, of alpha4beta7 by soluble ligand (or mAb) that stimulates autocrine production of GM-CSF and promotes eosinophil survival.  相似文献   

14.
We have compared the adhesion of 51Cr-labeled eosinophils and neutrophils to cultured human umbilical vein endothelial cell (EC) monolayers that have been stimulated with IL-1, TNF, or LPS. Each agent stimulated the adhesion to EC of both eosinophils and neutrophils in a similar dose- and time-dependent manner. F(ab')2 fragments of mAb 1.2B6 (anti-endothelial leukocyte adhesion molecule (ELAM)-1) and mAb 6.5B5 (anti-intercellular adhesion molecule (ICAM)-1) each inhibited partially, and to a similar extent, eosinophil and neutrophil adhesion to EC monolayers prestimulated with TNF (10 ng/ml) for 6 h. Greater inhibition of both eosinophil and neutrophil adhesion was achieved by combining the effects of mAb 1.2B6 with either mAb 6.5B5 or mAb TS1/18 (anti-CD18). These observations indicate that both ELAM-1 and ICAM-1 are involved in the adhesion of eosinophils and neutrophils to EC stimulated with TNF. In order to determine whether these molecules are expressed in vivo during allergen-induced late phase allergic responses in the skin, human skin biopsies were examined at 6 h after Ag or saline challenge with the use of an alkaline phosphatase-staining technique. Both ELAM-1 and ICAM-1 were expressed with greater intensities in Ag-challenged biopsies, suggesting that these molecules may be involved in granulocyte recruitment in vivo. The similarities we have established between mechanisms of eosinophil and neutrophil adhesion to cytokine-stimulated EC suggests that factors other than differential leukocyte-EC adhesion may be responsible for the selective accumulation of eosinophils at sites of allergic inflammation.  相似文献   

15.
IL-1 beta promotes adhesiveness in human umbilical vein endothelial cells (HuVEC) for eosinophils through expression of adhesion molecules including intercellular adhesion molecules-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). Using an in vitro endothelial monolayer system, we examined whether IL-1 beta or TNF-alpha can promote eosinophil transendothelial migration. We also evaluated the contributions of ICAM-1, E-selectin, VCAM-1, leukocyte adhesion complex (CD11/18), and very late Ag-4 (CD11b/18) (VLA-4) in this process using blocking mAb, and determined the changes in expression of CD11b and L-selectin on eosinophils that had undergone transmigration. IL-1 beta and TNF-alpha treatment of HuVEC (4 h, 5 ng/ml) induced significant transendothelial migration of eosinophils (a 4.1 +/- 0.4-fold (IL-1 beta) and 2.0 +/- 0.9-fold (TNF-alpha) increase from the spontaneous value of 3.2 +/- 0.3%). Increased CD11b expression and shedding of L-selectin were observed on eosinophils following IL-1 beta-induced eosinophil transendothelial migration. Studies with mAb revealed that blockade of either ICAM-1 or CD11/18 inhibited transmigration, while antibodies against VCAM-1 and VLA-4 had no inhibitory effect. Among antibodies which block beta 2 integrins, anti-CD18 mAb had the best inhibitory effect (88% inhibition). The combined inhibitory effect of anti-CD11a mAb and anti-CD11b mAb was roughly equal to that of anti-CD18, although anti-CD11a (31% inhibition) and anti-CD11b (52% inhibition) were less effective individually. Anti-ICAM-1 by itself inhibited IL-1 beta-induced eosinophil transendothelial migration (24% inhibition) whereas neither anti-E-selectin nor anti-VCAM-1 were effective inhibitors. Interestingly, the combination of anti-E-selectin and anti-VCAM-1 with anti-ICAM-1 inhibited IL-1 beta-induced eosinophil transendothelial migration significantly better (53% inhibition) than anti-ICAM-1 alone. These results suggest that although the initial attachment of eosinophils to IL-1 beta-activated endothelial cells involves VCAM-1, E-selectin, and ICAM-1, the subsequent transendothelial migration process relies heavily on ICAM-1 and CD11/18. Finally, the changes that eosinophils have been observed to undergo during infiltration in vivo, namely increased expression of CD11/18 and shedding of L-selectin, appear to take place as a direct result of the interaction between eosinophils and endothelial cells.  相似文献   

16.
Although mucins provide lubrication and physical protection for epithelial cell surfaces, other functional roles for these large glycoproteins are unknown. One human mucin, designated DF3 Ag, is detectable on apical surfaces of normal epithelial secretory cells and in normal milk, urine, and plasma. The present studies have examined the effects of DF3 Ag purified from both normal and malignant sources on the antibody-dependent cytotoxicity of Schistosoma mansoni by eosinophils (ADCC-E) and on the adherence of eosinophils to inert antibody-coated targets. DF3 Ag purified from tissue culture supernatant of a human breast carcinoma cell line or from human milk inhibited ADCC-E in a concentration-dependent manner, with half-maximal inhibitory activity at 3 to 10 micrograms/ml. Inhibition of ADCC-E was specific for the DF3 mucin, because no inhibition was observed with two other unrelated, circulating glycoproteins: carcinoembryonic Ag and alpha 1-acid glycoprotein. Inhibition was not a result of direct cytotoxicity of the DF3 Ag for eosinophils, as demonstrated by the lack of detectable effect of the mucin on cellular trypan blue exclusion or PMA-induced H2O2 release. The inhibitory effect was time dependent, requiring the presence of DF3 Ag in the ADCC-E culture for at least 4 h, beginning within the first 2 h of eosinophil-schistosomula interaction. Furthermore, inhibition was not a result of interaction between DF3 Ag and the activating lymphokine. These data suggest that inhibition of ADCC-E by DF3 Ag is a result of interference of adhesion of eosinophils to Ig-coated targets. In this regard, purified DF3 tumor Ag prevents eosinophil adherence to human Ig-conjugated Sepharose 4B beads. Preincubation of the inert Ig-coated targets with DF3 Ag did not inhibit subsequent eosinophil adherence, suggesting that DF3 Ag interacts with a moiety present on the eosinophil. Inhibition of adhesion occurred at 37 degrees C, but was also observed at 4 degrees C. These results suggest that DF3 Ag acts as an immunomodulating agent. Because activated eosinophils can damage surrounding normal tissues as well as infectious organisms, DF3 Ag may serve to protect secretory epithelium from the cytotoxic effects of activated inflammatory cells.  相似文献   

17.
Eosinophils have been found in infiltrates of many different cancers. It is still unclear as to whether they are passive bystanders in the cellular milieu or active cellular agents in host responses. Thus their harmful or helpful nature remains equivocal. We have developed an in vitro tri-cell model of eosinophils, MCF-7 breast tumor cell spheroids and HUVEC endothelial cells to examine the binding and association of eosinophils with both the tumor and the endothelia and the ensuing action of the tumor. Eosinophils bound very rapidly to the tumor spheroid and remained tightly bound throughout the 24 hr culture period. Histological staining of the tri-cell complex revealed highly granulated eosinophils as well as large amounts of degranulated protein diffused throughout the spheroid. IL-5 treatment of eosinophil: MTS complexes resulted in destruction of the tumor cells, particularly those which had grown out from the spheroid onto the endothelial cells. Eosinophils, pretreated with IL-5 before interaction with the tumor or endothelial cells, bound aggressively to the endothelial cells, thereby preventing tumor attachment. This eosinophil tri-cell tumor model system mimics clinical observations with regards to binding to epithelial and endothelial cells, dispersal of granular proteins throughout the tumor and also tumor destruction. Because it closely mirrors in vivo cellular interactions, it allows one to study more closely the mechanism(s) of eosinophil killing, the modulation of eosinophil activity and the testing of therapeutic interventions. The accommodation of the model to tumor invasion, using metastatic tumor cells and extracellular matrices such as matrigel, will help to elucidate a role for eosinophils (and their mediators) in cancer invasion and metastasis.  相似文献   

18.
We have previously established that eosinophils studied ex vivo from the sputum of asthmatics express intercellular adhesion molecule-1 (ICAM-1) and HLA-DR, whereas peripheral blood eosinophils do not express these surface proteins. On incubation of highly purified (greater than 99.5% pure) blood eosinophils from normal subjects with T cell supernatants, eosinophil ICAM-1 was induced in 24 h, whereas HLA-DR was maximally induced within 48 h. Recombinant cytokines that enable eosinophil survival (IL-5, IL-3, and granulocyte macrophage-CSF) were found to be unable to induce ICAM-1 or HLA-DR, even when pooled at concentrations individually required for eosinophil survival. However, synergy between these eosinophil survival factors and TNF (-alpha and -beta) was found mainly responsible for ICAM-1 induction, whereas synergy between IL-3 and IFN-gamma occurred for HLA-DR induction. Culture of eosinophils in the presence of cytokines and cycloheximide prevented expression of ICAM-1 and HLA-DR, showing that de novo eosinophil protein synthesis is occurring. At a functional level we demonstrate that ICAM-1-bearing eosinophils have increased adhesion capacity for autologous T cells. In contrast, HLA-DR-expressing eosinophils mediated Ag-specific proliferation of an autologous HLA-DR-restricted T cell clone that was inhibitable by anti-HLA-DR and anti-ICAM-1 mAb. Since eosinophil-mediated Ag presentation was inhibitable by treatment of eosinophils with glutaraldehyde or chloroquine, this suggests that eosinophils participate in Ag uptake, processing, and presentation and have accessory functions. Thus, through the induction of ICAM-1 and HLA-DR on tissue eosinophils, eosinophils have the capacity to interact with leukocytes and present Ag to T cells.  相似文献   

19.
The involvement of nitric oxide (NO) as both pro and anti-inflammatory agent in allergic, airway inflammatory, and asthmatic diseases and the active participation of eosinophils in such ailments have been previously suggested. NO modulates eosinophil number, migration and their survival. The microenvironment of NO synthase (NOS) in subcellular organelles determines its rate and efficiency of catalysis, which in turn influences NO generation at distinct intracellular locales. The present study was undertaken to assess the intracellular distribution of NOS isoforms by transmission electron microscopy followed by morphometric analysis in human and rat eosinophils. Rat eosinophils were explored in parallel, and since they are widely used as model systems to mimic human diseases, a comparative study on NOS localization patterns might provide useful information in deciphering NO role in diverse aspects of eosinophil-related inflammatory ailments. The results demonstrated predominance of neuronal NOS (nNOS) in the eosinophilic granules and even distribution of inducible NOS (iNOS) and nNOS in the cytoplasm and nucleus of human eosinophils. In rat eosinophils, however, iNOS was mainly localized in the eosinophilic granules and nucleus, while nNOS was distributed evenly in cytoplasm and nucleus. Distribution of endothelial NOS (eNOS) in eosinophils was scanty. Differences in NOS isoforms and their localization in human and rat cells might have implications in differential mode of catalysis and functional contribution to eosinophil physiology and pathology, warranting detailed investigations. The present study highlights species-specific differences in the relative abundance and distribution pattern of NOS isoforms in rat and human eosinophils, which should be considered cautiously in interpreting the rat data to humans.  相似文献   

20.
Short-lived peripheral blood eosinophils are recruited to the lungs of asthmatics after allergen challenge, where they become long-lived effector cells central to disease pathophysiology. GM-CSF is an important cytokine which promotes eosinophil differentiation, function, and survival after transit into the lung. In human eosinophils, GM-CSF production is controlled by regulated mRNA stability mediated by the 3' untranslated region, AU-rich elements (ARE). We identified human Y box-binding factor 1 (YB-1) as a GM-CSF mRNA ARE-specific binding protein that is capable of enhancing GM-CSF-dependent survival of eosinophils. Using a transfection system that mimics GM-CSF metabolism in eosinophils, we have shown that transduced YB-1 stabilized GM-CSF mRNA in an ARE-dependent mechanism, causing increased GM-CSF production and enhanced in vitro survival. RNA EMSAs indicate that YB-1 interacts with the GM-CSF mRNA through its 3' untranslated region ARE. In addition, endogenous GM-CSF mRNA coimmunoprecipitates with endogenous YB-1 protein in activated eosinophils but not resting cells. Thus, we propose a model whereby activation of eosinophils leads to YB-1 binding to and stabilization of GM-CSF mRNA, ultimately resulting in GM-CSF release and prolonged eosinophil survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号