首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The olfactory nonsensory cells contribute to the maintenance of normal functions of the olfactory epithelium (OE). Specifically, the ciliated nonsensory cells of teleosts play important roles in the odorant detection by OE in aqueous environment. Their cilia show strong beating activities and cause water flow at the OE surface, making the detection of odorants by OE more efficient. Because intracellular Ca2+ level has been reported to play an important role in ciliary beating, the ciliary beating activity may be regulated by intracellular Ca2+ dynamics of these ciliated nonsensory cells.

Methods

We performed Ca2+ imaging experiments to analyze the Ca2+ dynamics in acutely dissociated OE cells of the goldfish. Furthermore, we examined the contribution of the Ca2+ dynamics to the ciliary beating frequency (CBF) at the surface of the intact OE.

Results

Olfactory nonsensory cells showed both spontaneous intracellular Ca2+ oscillations and propagating intercellular Ca2+ waves. Application of 2-aminoethoxydiphenylborate (2-APB), which antagonizes IP3-induced Ca2+ release from intracellular stores suppressed these Ca2+ oscillations. Furthermore, 2-APB application to the intact OE lamellae resulted in the decrease of CBF at the surface of the OE.

Conclusions

These results indicate that spontaneous intracellular calcium oscillations persistently up-regulate the ciliary beating at the surface of the OE in teleosts.

General significance

Ciliary beating activity at the surface of OE can be regulated by the Ca2+ dynamics of olfactory nonsensory cells. Because this ciliary movement causes inflow of external fluid into the nostril, this regulation is suggested to influence the efficiency of odorant detection by OE.  相似文献   

2.

Background

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a member of the Ca?2+/calmodulin-dependent kinase (CaMK) family, functions as an upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase. Thus, CaMKK2 is involved in the regulation of several key physiological and pathophysiological processes. Previous studies have suggested that Ca2+/CaM binding may cause unique conformational changes in the CaMKKs compared with other CaMKs. However, the underlying mechanistic details remain unclear.

Methods

In this study, hydrogen-deuterium exchange coupled to mass spectrometry, time-resolved fluorescence spectroscopy, small-angle x-ray scattering and chemical cross-linking were used to characterize Ca2+/CaM binding-induced structural changes in CaMKK2.

Results

Our data suggest that: (i) the CaMKK2 kinase domain interacts with the autoinhibitory region (AID) through the N-terminal lobe of the kinase domain including the RP insert, a segment important for targeting downstream substrate kinases; (ii) Ca2+/CaM binding affects the structure of several regions surrounding the ATP-binding pocket, including the activation segment; (iii) although the CaMKK2:Ca2+/CaM complex shows high conformational flexibility, most of its molecules are rather compact; and (iv) AID-bound Ca2+/CaM transiently interacts with the CaMKK2 kinase domain.

Conclusions

Interactions between the CaMKK2 kinase domain and the AID differ from those of other CaMKs. In the absence of Ca2+/CaM binding the autoinhibitory region inhibits CaMKK2 by both blocking access to the RP insert and by affecting the structure of the ATP-binding pocket.

General significance

Our results corroborate the hypothesis that Ca2+/CaM binding causes unique conformational changes in the CaMKKs relative to other CaMKs.  相似文献   

3.

Background

Vanadium is an essential transition metal in biological systems. Several key proteins related to vanadium accumulation and its physiological function have been isolated, but no vanadium ion transporter has yet been identified.

Methods

We identified and cloned a member of the Nramp/DCT family of membrane metal transporters (AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We performed immunological and biochemical experiments to examine its expression and transport function.

Results

Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO2+ into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below pH 6. Kinetic parameters (Km and Vmax) of AsNramp-mediated VO2+ transport at pH 8.5 were 90 nM and 9.1 pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO2+ under the same conditions. Excess Fe2+, Cu2+, Mn2+, or Zn2+ inhibited the transport of VO2+. AsNramp was revealed to be a novel VO2+/H+ antiporter, and we propose that AsNramp mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar H+-ATPase in vanadocytes.

General Significance

This is the first report of identification and functional analysis on a membrane transporter for vanadium ions.  相似文献   

4.

Background

Vanabins are a unique protein family of vanadium-binding proteins with nine disulfide bonds. Possible binding sites for VO2+ in Vanabin2 from a vanadium-rich ascidian Ascidia sydneiensis samea have been detected by nuclear magnetic resonance study, but the metal selectivity and metal-binding ability of each site was not examined.

Methods

In order to reveal functional contribution of each binding site, we prepared several mutants of Vanabin2 by in vitro site-directed mutagenesis and analyzed their metal selectivity and affinity by immobilized metal-ion affinity chromatography and Hummel Dreyer method.

Results

Mutation at K10/R60 (site 1) markedly reduced the affinity for VO2+. Mutation at K24/K38/R41/R42 (site 2) decreased the maximum binding number, but only slightly increased the overall affinity for VO2+. Secondary structure of both mutants was the same as that of the wild type as assessed by circular dichroism spectroscopy. Mutation in disulfide bonds near the site 1 did not affect its high affinity binding capacity, while those near the site 2 decreased the overall affinity for VO2+.

General significance

These results suggested that the site 1 is a high affinity binding site for VO2+, while the site 2 composes a moderate affinity site for multiple VO2+.  相似文献   

5.

Background

A novel family of intracellular Ca2+-release channels termed two-pore channels (TPCs) has been presented as the receptors of NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca2+ mobilizing intracellular messenger. TPCs have been shown to be exclusively localized to the endolysosomal system mediating NAADP-evoked Ca2+ release from the acidic compartments.

Objectives

The present study is aimed to investigate NAADP-mediated Ca2+ release from intracellular stores in the megakaryoblastic cell line MEG01.

Methods

Changes in cytosolic and intraluminal free Ca2+ concentrations were registered by fluorimetry using fura-2 and fura-ff, respectively; TPC expression was detected by PCR.

Results

Treatment of MEG01 cells with the H+/K+ ionophore nigericin or the V-type H+-ATPase selective inhibitor bafilomycin A1 revealed the presence of acidic Ca2+ stores in these cells, sensitive to the SERCA inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). NAADP releases Ca2+ from acidic lysosomal-like Ca2+ stores in MEG01 cells probably mediated by the activation of TPC1 and TPC2 as demonstrated by TPC1 and TPC2 expression silencing and overexpression. Ca2+ efflux from the acidic lysosomal-like Ca2+ stores or the endoplasmic reticulum (ER) results in ryanodine-sensitive activation of Ca2+-induced Ca2+ release (CICR) from the complementary Ca2+ compartment.

Conclusion

Our results show for the first time NAADP-evoked Ca2+ release from acidic compartments through the activation of TPC1 and TPC2, and CICR, in a megakaryoblastic cell line.  相似文献   

6.

Background

Allergen-induced imbalance of specific T regulatory (Treg) cells and T helper 2 cells plays a decisive role in the development of immune response against allergens.

Objective

To evaluate effects and potential mechanisms of DNA vaccine containing ovalbumin (OVA) and Fc fusion on allergic airway inflammation.

Methods

Bronchoalveolar lavage (BAL) levels of inflammatory mediators and leukocyte infiltration, expression of CD11c +CD80 + and CD11c +CD86 + co-stimulatory molecules in spleen dendritic cells (DCs), circulating CD4 + and CD8 + T cells, Foxp3+ in spleen CD4 + T cells and spleen CD4 + T cells were measured in OVA-sensitized and challenged animals pretreated with pcDNA, OVA-pcDNA, Fc-pcDNA, and OVA-Fc-pcDNA.

Results

OVA-Sensitized and challenged mice developed airway inflammation and Th2 responses, and decreased the proliferation of peripheral CD4 +and CD8 + T cells and the number of spleen Foxp3 + Treg. Those changes with increased INF-γ production and reduced OVA-specific IgE production were protected by the pretreatment with OVA-Fc-pcDNA.

Conclusion

DNA vaccine encoding both Fc and OVA showed more effective than DNA vaccine encoding Fc or OVA alone, through the balance of DCs and Treg.  相似文献   

7.
Y Guo  DN Tukaye  WJ Wu  X Zhu  M Book  W Tan  SP Jones  G Rokosh  S Narumiya  Q Li  R Bolli 《PloS one》2012,7(7):e41178

Background

Pharmacologic studies with cyclooxygenase-2 (COX-2) inhibitors suggest that the late phase of ischemic preconditioning (PC) is mediated by COX-2. However, nonspecific effects of COX-2 inhibitors cannot be ruled out, and the selectivity of these inhibitors for COX-2 vs. COX-1 is only relative. Furthermore, the specific prostaglandin (PG) receptors responsible for the salubrious actions of COX-2-derived prostanoids remain unclear.

Objective

To determine the role of COX-2 and prostacyclin receptor (IP) in late PC by gene deletion.

Methods

COX-2 knockout (KO) mice (COX-2−/−), prostacyclin receptor KO (IP−/−) mice, and respective wildtype (WT, COX-2+/+ and IP+/+) mice underwent sham surgery or PC with six 4-min coronary occlusion (O)/4-min R cycles 24 h before a 30-min O/24 h R.

Results

There were no significant differences in infarct size (IS) between non-preconditioned (non-PC) COX-2+/+, COX-2−/−, IP+/+, and IP−/− mice, indicating that neither COX-2 nor IP modulates IS in the absence of PC. When COX-2−/− or IP−/− mice were preconditioned, IS was not reduced, indicating that the protection of late PC was completely abrogated by deletion of either the COX-2 or the IP gene. Administration of the IP selective antagonist, RO3244794 to C57BL6/J (B6) mice 30 min prior to the 30-min O had no effect on IS. When B6 mice were preconditioned 24 h prior to the 30-min O, IS was markedly reduced; however, the protection of late PC was completely abrogated by pretreatment of RO3244794.

Conclusions

This is the first study to demonstrate that targeted disruption of the COX-2 gene completely abrogates the infarct-sparing effect of late PC, and that the IP, downstream of the COX-2/prostanoid pathway, is a key mediator of the late PC. These results provide unequivocal molecular genetic evidence for an essential role of the COX-2/PGI2 receptor axis in the cardioprotection afforded by the late PC.  相似文献   

8.

Background

A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive.

Findings

Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+.

Conclusions

Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.
  相似文献   

9.

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
  相似文献   

10.

Background

The determination of protein–protein interfaces is of crucial importance to understand protein function and to guide the design of compounds. To identify protein–protein interface by NMR spectroscopy, 13C NMR paramagnetic shifts induced by freely diffusing 4-hydroxy-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) are promising, because TEMPOL affects distinct 13C NMR chemical shifts of the solvent accessible nuclei belonging to proteins of interest, while 13C nuclei within the interior of the proteins may be distinguished by a lack of such shifts.

Method

We measured the 13C NMR paramagnetic shifts induced by TEMPOL by recording 13C–13C TOCSY spectra for ubiquitin in the free state and the complex state with yeast ubiquitin hydrolase1 (YUH1).

Results

Upon complexation of ubiquitin with YUH1, 13C NMR paramagnetic shifts associated with the protein binding interface were reduced by 0.05 ppm or more. The identified interfacial atoms agreed with the prior X-ray crystallographic data.

Conclusions

The TEMPOL-induced 13C chemical shift perturbation is useful to determine precise protein–protein interfaces.

General significance

The present method is a useful method to determine protein–protein interface by NMR, because it has advantages in easy sample preparations, simple data analyses, and wide applicabilities.  相似文献   

11.

Motivation

The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.

Main types of variables included

The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.

Spatial location and grain

BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).

Time period and grain

BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.

Major taxa and level of measurement

BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.

Software format

.csv and .SQL.
  相似文献   

12.

Background

It has been shown that the contractile state of airway smooth muscle cells (SMCs) in response to agonists is determined by the frequency of Ca2+ oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca2+ oscillations.

Methods

The effects of isoproterenol (ISO), forskolin (FSK) and 8-bromo-cAMP on the relaxation and Ca2+ signaling of airway SMCs contracted with methacholine (MCh) was investigated in murine lung slices with phase-contrast and laser scanning microscopy.

Results

All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca2+ oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca2+ oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca2+ oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca2+ stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca2+ available to stimulate contraction because an elevation of intracellular Ca2+ concentration induced by exposure to a Ca2+ ionophore (ionomycin) or by photolysis of caged-Ca2+ did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca2+-activated K+ channels, which would be expected to increase Ca2+ influx and contraction. By contrast, the photolysis of caged-IP3 in the presence of agonist, to further elevate the intracellular IP3 concentration, reversed the slowing of the frequency of the Ca2+ oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP3R to IP3 was reduced by FSK and this was supported by the reduced ability of IP3 to release Ca2+ in SMCs in the presence of FSK.

Conclusion

These results indicate that the relaxant effect of cAMP-elevating agents on airway SMCs is achieved by decreasing the Ca2+ oscillation frequency by reducing internal Ca2+ release through IP3 receptors.
  相似文献   

13.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

14.

Background

The rate-limiting step that determines the dominant time constant (τD) of mammalian rod photoresponse recovery is the deactivation of the active phosphodiesterase (PDE6). Physiologically relevant Ca2+-dependent mechanisms that would affect the PDE inactivation have not been identified. However, recently it has been shown that τD is modulated by background light in mouse rods.

Methodology/Principal Findings

We used ex vivo ERG technique to record pharmacologically isolated photoreceptor responses (fast PIII component). We show a novel static effect of calcium on mouse rod phototransduction: Ca2+ shortens the dominant time constant (τD) of saturated photoresponse recovery, i.e., when extracellular free Ca2+ is decreased from 1 mM to ∼25 nM, the τD is reversibly increased ∼1.5–2-fold.

Conclusions

We conclude that the increase in τD during low Ca2+ treatment is not due to increased [cGMP], increased [Na+] or decreased [ATP] in rod outer segment (ROS). Also it cannot be due to protein translocation mechanisms. We suggest that a Ca2+-dependent mechanism controls the life time of active PDE.  相似文献   

15.

Aim

We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2−/−) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells.

Methods

Isolated islets from βTSC2−/− mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes.

Results

Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2−/− mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2−/− mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2−/− mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.

Conclusion

Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.  相似文献   

16.

Background

Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca2+-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase.

Methodology/Principal Findings

Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,β-imido-dUTP did not show any effect on Ca2+-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca2+-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues 4SE5; 7TP8; and 31LS32). The cleavage between the 31LS32 peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.

Conclusions/Significance

Results argue for a mechanism where Ca2+-calpain may regulate nuclear availability and degradation of dUTPase.  相似文献   

17.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

18.

Background

The secretory activity of Sertoli cells (SC) is dependent on ion channel functions and protein synthesis and is critical to ongoing spermatogenesis. The aim of this study was to investigate the mechanism of action associated with a non-metabolizable amino acid [14C]-MeAIB (α-(methyl-amino)isobutyric acid) accumulation stimulated by T4 and the role of the integrin receptor in this event, and also to clarify whether the T4 effect on MeAIB accumulation and on Ca2+ influx culminates in cell secretion.

Methods

We have studied the rapid and plasma membrane initiated effects of T4 by using 45Ca2+ uptake and [45C]-MeAIB accumulation assays, respectively. Thymidine incorporation into DNA was used to monitor nuclear activity and quinacrine to analyze the secretory activity on SC.

Results

The stimulation of MeAIB accumulation by T4 appears to be mediated by the integrin receptor in the plasma membrane since tetrac and RGD peptide were able to nullify the effect of this hormone. In addition, T4 increases extracellular Ca2+ uptake and Ca2+ from intracellular stocks to enhance nuclear activity, but this genomic action seems not to influence SC secretion mediated by T4. Also, the cytoskeleton and ClC-3 chloride channel contribute to the membrane-associated responses of SC.

Conclusions

T4 integrin receptor activation ultimately determines the plasma membrane responses on amino acid transport in SC, but it is not involved in calcium influx, cell secretion or the nuclear effect of the hormone.

General significance

The integrin receptor activation by T4 may take a role in plasma membrane processes involved in the male reproductive system.  相似文献   

19.

Background

All identified mammalian TRPC channels show a C-terminal calmodulin (CaM)- and inositol 1,4,5-trisphosphate receptors (IP3Rs)-binding (CIRB) site involved in the regulation of TRPC channel function.

Objectives

To assess the basis of CaM/IP3Rs binding to the CIRB site of TRPC6 and its role in platelet physiology.

Methods

Protein association was detected by co-immunoprecipitation and Western blotting, Ca2+ mobilization was measured by fluorimetric techniques and platelet function was analyzed by aggregometry.

Results

Co-immunoprecipitation of TRPC6 with CaM or the IP3Rs at different cytosolic free Ca2+ concentrations ([Ca2+]c) indicates that the association between these proteins is finely regulated by cytosolic Ca2+ via association of CaM and displacement of the IP3Rs at high [Ca2+]c. Thrombin-stimulated association of TRPC6 with CaM or the IP3Rs was sensitive to 2-APB and partially inhibited by dimethyl BAPTA loading, thus suggesting that the association between these proteins occurs through both Ca2+-dependent and -independent mechanisms. Incorporation of an anti-TRPC6 C-terminal antibody, whose epitope overlaps the CIRB region, impaired the dynamics of the association of TRPC6 with CaM and the IP3Rs, which lead to both inhibition and enhancement of thrombin- and thapsigargin-evoked Ca2+ entry in the presence of low or high, respectively, extracellular Ca2+ concentrations, as well as altered thrombin-evoked platelet aggregation.

Conclusions

Our results indicate that the CIRB site of TRPC6 plays an important functional role in platelets both modulating Ca2+ entry and aggregation through its interaction with CaM and IP3Rs.  相似文献   

20.

Background

The effect of indomethacin (INDO) on Ca2 + mobilization, cytotoxicity, apoptosis and caspase activation and the potential protective effect of quercetin (QUE), resveratrol (RES) and rutin (RUT) were determined in Caco-2 cells.

Methods

Caco-2 cells were incubated with INDO in the presence or absence of QUE, RES or RUT. The concentrations of Ca2 + in the cytosol (Fluo-3 AM) and mitochondria (Rhod-2 AM) were determined as well as the cytotoxicity (MTT reduction and LDH leakage), apoptosis (TUNEL) and caspase-3 and 9 activities.

Results

INDO promoted Ca2 + efflux from the endoplasmic reticulum (ER), resulting in an early, but transient, increment of cytosolic Ca2 + at 3.5 min, followed by a subsequent increment of intra-mitochondrial Ca2 + at 24 min. INDO also induced cytotoxicity, apoptosis, and increased caspase activities and cytochrome c release. All these alterations were prevented by the inhibitors of the IP3R and RyR receptors, 2-Aminoethoxydiphenyl borate (2-APB) and dantrolene. QUE was the most efficient polyphenol in preventing Ca2 + mobilization induced by INDO and all of its consequences including cytotoxicity and apoptosis.

Conclusions

In Caco-2 cells, INDO stimulates ER Ca2 + mobilization, probably through the activation of IP3R and RyR receptors, and the subsequent entry of Ca2 + into the mitochondria. Polyphenols protected the cells against the Ca2 + mobilization induced by INDO and its consequences on cytotoxicity and apoptosis.

General significance

These results confirm the possibility of using polyphenols and particularly QUE for the protection of the gastroduodenal mucosa in subjects consuming NSAIDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号