首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The productivity of short‐rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single‐stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow‐based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.  相似文献   

2.
王国华  陈蕴琳  缑倩倩 《生态学报》2021,41(14):5658-5668
通过调查分析河西走廊荒漠绿洲过渡带不同种植年限(5、10、20、30和40a)人工梭梭生理生化变化(叶片渗透调节物质、丙二醛和叶绿素含量,根系活力)和个体形态特征(叶片、枝条和茎干生物量、枯枝落叶比、株高、冠幅等)以揭示不同种植年限雨养梭梭对土壤水分变化的响应机制。研究结果表明:随着梭梭种植年限增加,人工梭梭林内深层100-120cm和180-200cm土壤水分变化明显,在5-20a保持在3%-4%,而在种植后期(30-40a)土壤水分下降到1%-2%左右。在5-20a,梭梭主要通过显著提高叶片渗透调节物质可溶性糖和可溶性蛋白含量,维持叶片较低的丙二醛含量和较高的叶绿素含量,保持新叶光合能力;同时,显著提高0-20cm根系的活力,增强对表层土壤水分的吸收能力;但在30-40a,梭梭叶片渗透调节物质明显减少,梭梭叶片丙二醛含量增加,叶绿素含量下降,同时叶绿素a,b比例失调,渗透调节作用失效,梭梭叶片老化,老叶比例明显增加,光合作用能力下降,枝条和茎干退化严重,个体生物量进一步减少,在40a梭梭叶片、枝条和茎干生物量下降到最低值。研究表明在年降水100mm左右的荒漠绿洲过渡带,在种植梭梭5-20a土壤水分为3%-4%,梭梭可以通过生理调节适应土壤干燥,但是从30a土壤水分下降到1%-2%时,梭梭主要通过枯枝落叶降低个体蒸腾耗水量,在40a梭梭进入休眠(假死)状态,这暗示土壤水分下降到1%-2%,可能是梭梭的临界吸收土壤水分。  相似文献   

3.
Water is a key resource in commercial wine production and both large excesses and deficits have undesirable effects upon the amount and quality of the wine produced. A balance between the water requirements of a fully developed canopy and the induced stress necessary for the commercial quality of the wine must be reached. Thus we need a physiological indicator that integrates both soil and climatic conditions to use as a management tool. An experimental field was established in the eastern part of the Demarcated Region of Douro – Portugal, to study the effect of water supply on the quality of the musts produced and we need a physiological indicator that relates to the water use and stress of the grapevines (Vitis vinifera L.) and to the later evaluation of the effect of irrigation practices upon the quality of the musts. We chose as indicators sap flow, leaf water potential at pre-dawn (0600 h), mid-morning (1000 h), solar noon (1400 h) and sunset (1900 h), stomatal conductance and leaf transpiration both measured at mid-morning and at solar noon, and related them to our experimental treatments that induce differences in soil water content, evaluated with time-domain reflectometry probes, with the objective of selecting the indicator that best describes the plant water status under different amounts of available water. Sap flow, leaf water potential and leaf transpiration rate measured at solar noon had highly significant correlations with soil water content and their regression on soil water content was also highly significant. Each of these parameters has shortcomings and none has a clear advantage over the other two as an integrator of the environmental conditions under these experimental conditions. Further studies of the parameters and their relationship with the quality characteristics of the produced musts are needed to achieve the ultimate objective of manipulating the soil water content.  相似文献   

4.
Hao Xu  Yan Li 《Plant and Soil》2006,285(1-2):5-17
Plant water-use strategy is considered to be a function of the complex interactions between species of different functional types and the prevailing environmental conditions. The functional type of a plant’s root system is fundamental in determining the water-use strategy of desert shrubs and the physiological responses of the plant to an occasional rainfall event, or rain pulse. In this current study of Tamarix ramosissima Ledeb. Fl.Alt., Haloxylon ammodendron (C.A.Mey.) Bunge and Reaumuria soongorica (Pall.) Maxim., three dominant shrub species in the Gurbantonggut Desert (Central Asia), plant root systems were excavated in their native habitat to investigate their functional types and water-use strategies. We monitored leaf water potential, photosynthesis and transpiration rate during a 39-day interval between successive precipitation events during which time the upper soil water changed markedly. Plant apparent hydraulic conductance and water-use efficiency were calculated for the varying soil water conditions. Our results show that: 1) The three species of shrub belong to two functional groups: phreatophyte and non-phreatophyte; 2) The photosynthetic capacity and leaf-specific apparent hydraulic conductance of the three species was stable during the time that the water condition in the upper soil changed; 3) Transpiration, leaf water potential and water-use efficiency in Tamarix ramosissima Ledeb. Fl.Alt. were stable during the period of observation, but varied significantly for the other two species. Tamarix ramosissima Ledeb. Fl.Alt., as a phreatophyte, relies mostly on groundwater for survival; its physiological activity is not inhibited in any way by the deficiency in upper soil water. Non-phreatophyte Haloxylon ammodendron (C.A.Mey.) Bunge and Reaumuria soongorica (Pall.) Maxim. use precipitation-derived upper soil water for survival, and thus respond clearly to rain pulse events in terms of leaf water potential and transpiration. The observed similarity in leaf-specific photosynthesis capacity among all three species indicates that the two non-phreatophyte species are able to maintain normal photosynthesis within a wide range of plant water status. The observed stability in leaf-specific apparent hydraulic conductance indicates that the two non-phreatophyte species are able to maintain sufficient water supply to their foliage via, mostly likely, effective morphological adjustment at the scale of the individual plant.Section editor: H. Lambers  相似文献   

5.
Effective hydraulic responses to varying soil moisture and evaporative demand are crucial to plant survival in arid ecosystems. This study was carried out during two growing seasons (2004?C2005) on two typical desert shrub species, Tamarix ramosissima and Haloxylon ammodendron, co-occurring in the Gurbantonggut Desert (Central Asia), to investigate their hydraulic responses to seasonal variations in water availability. The root distribution was studied by excavating the intact root systems. Leaf-specific apparent hydraulic conductance (K l) for the two species was calculated based on leaf water potential (?? l) and transpiration rate (T r), which were monitored during the growing seasons. T. ramosissima had a deeper taproot (3.1 vs. 2.6 m) and a larger root surface area (3.02 vs. 1.28 m2) than H. ammodendron. Combined with a higher ?? l, this meant that it maintained a better water status in general. For the deep-rooting T. ramosissima, the seasonal pattern of its predawn leaf water potential (?? pd) was in high accordance with the seasonal changes in soil moisture at a depth of 2.6?C2.8 m, which was largely influenced by the upflow of groundwater through capillary ascent, and barely responded to rain events. For the shallow-rooting H. ammodendron, the seasonal pattern of ?? pd was closely related to soil moisture in the upper layer at a depth of 0?C0.2 and 0.6?C0.8 m, which was recharged periodically by rain events and responded acutely to rainfall above 5 mm. The two species differed in their maximum transpiration rates (T rmax) and ?? pd: in T. ramosissima, T rmax gradually dropped with decreasing ?? pd; in H. ammodendron, T rmax showed no significant response to ?? pd. For T. ramosissima, the major water resource was groundwater and vadose zone water, and ?? l contributed significantly to transpiration regulation. For H. ammodendron, the primary water resource was precipitation input, which was not sufficient to keep the ?? l for this species outside the critical range of leaf shedding in summer. Thus, for these two representative species that share the same habitat, contrasting response strategies to water limitation were observed in relation to water acquisition and root distribution characteristics.  相似文献   

6.
To determine the tolerance of Salix gracilistyla to repetitive alternate flooding and drought, we measured leaf stomatal conductance, pre-dawn water potential, osmotic adjustment, and biomass production under greenhouse conditions. We used a control and nine crossed treatments (F1-D1–F3-D3) in which we combined 1-, 2-, or 3-week floodings (F) and droughts (D). Leaf stomatal conductance was lowest in 3 weeks of flooding or drought when the preceding event (flood or drought) was also of a 3-week duration. Leaf pre-dawn water potential was reduced in 3 weeks of drought when preceded by 2 or 3 weeks of flooding. Cuttings had slight osmotic adjustments in repetitions of long floodings and droughts. During longer durations of drought in crossed experiments, plants had low root and shoot mass, few hypertrophic lenticels, and reduced leaf mass; when flooding duration increased in crossed experiments, root mass was reduced, there were more hypertrophic lenticels, and the leaf area was reduced. Cuttings achieved stress tolerance by inhibition of transpiration, osmotic adjustment, reduction of transpiration area, and development of hypertrophic lenticels. Stress tolerance was weak when repetitive 2- or 3-week floodings were combined with 3-week droughts. The duration of flooding and drought periods under which S. gracilistyla achieves stress tolerance may be critical in determining distributions along riverbanks.  相似文献   

7.
Soil texture, as well as the presence of rocks, can determine the water status, growth, and distribution of plants in arid environments. The effects of soil rockiness and soil particle size distribution on shoot and root growth, root system size, rooting depth, and water relations were therefore investigated for the Crassulacean acid metabolism leaf succulent Agave deserti and the C(4) bunchgrass Pleuraphis rigida after precipitation events during the summer and winter/spring rainfall periods in the northwestern Sonoran Desert. The soils at the field site varied from sandy (<3% rocks by volume) to rocky (up to 35% rocks), with greater water availability at higher water potentials for sandy than for rocky soils. Although A. deserti was absent from the sandiest sites, its shoot and root growth during both rainfall periods were greatest in comparatively sandier sites and decreased as the soil rock content increased. Furthermore, A. deserti had twofold greater root surface area, root?:?leaf area ratio, and mean rooting depth at sandier than at rocky sites. As for A. deserti, shoot growth was greater for P. rigida at the sandier sites than at the rockier sites, even though its root surface area and mean rooting depth did not vary significantly. After early spring rainfall events, the leaf water potential for A. deserti did not differ between rocky and sandy sites, but transpiration rates were almost twofold greater at rocky than at sandy sites. During the same period, P. rigida had lower leaf water potentials and 25% lower transpiration rates at rocky than at sandy sites. The greater variability in the deployment of the root systems of A. deserti in response to soil rockiness may reflect its evergreen habit and slower growth, which allow it to endure periods of lower water availability than does P. rigida, whose leaves die during drought.  相似文献   

8.
Dodd  M. B.  Lauenroth  W. K. 《Plant Ecology》1997,133(1):13-28
We analyzed soil water data from three sites with different soil textures in the shortgrass steppe of northeastern Colorado, USA. Our objective was to evaluate the relationship between the occurrence of plant functional types and the effect of soil texture on soil water availability. Soil water availability was greatest in the upper soil layers at all three sites, but the loamy sand site had significantly greater soil water availability than the sandy clay loam and sandy clay sites in wetter years at depths below 60 cm. Calculations of proportional water availability by layer using both field data and fifty-year soil water model simulations, showed that the sandy clay loam and sandy clay soils on average had greater water availability in layers 30 cm and above, but that the loamy sand had the greatest water availability in layers beneath this, particularly at 105 cm. This observation can be linked to the occurrence of a fine textured subsoil at this site. The textural pattern in the loamy sand profile effectively creates two water resources: a shallow pool accessible to all plants; and a deep pool accessible only to deep-rooted plants. This is offered as an explanation for the co-dominance of the two main plant functional types at the loamy sand site. At the other two sites, shallow-rooted shortgrass vegetation dominated, being more consistent with the general pattern for the area. Thus the patterns of vegetation structure at the three sites were consistent with the hypothesis. Aboveground net primary production data for the three sites, along with transpiration estimates from the model simulations, indicated that the additional water availability in the coarse textured soil was associated with higher overall plant productivity.Nomenclature: Taxonomic nomenclature follows R. L. McGregor & T. M. Barkley (1986) Flora of the Great Plains. Great Plains Flora Association. University Press of Kansas, Lawrence.  相似文献   

9.
Summary Emergence and survival of honey mesquite (Prosopis glandulosa var.glandulosa Torr.) seedlings was quantified on sites with contrasting grazing histories: long-term continuous grazing (LTG) and long-term protection (LTP) from grazing by cattle. On each site, different levels of heroaceous defoliation were imposed at monthly intervals (no defoliation=ND, moderate=MD and heavy=HD). The two weeks following seed dissemination appeared to be the most critical toProsopis establishment on LTP-ND plots. Openings in the herbaceous layer created by moderate defoliation of grasses on the LTP site increased germination and/or survival 7-to 8-fold during this period. However, increasing the degree of defoliation from moderate to heavy did not stimulate additional emergence on either the LTP or LTG site. Emergence from scarified seed placed in cattle dung (17 to 30%) was lower than that of bare seed placements in various microhabitats (43–60%). However, deposition of scarifiedProsopis seed in dung in conjunction with graminoid defoliation may be the most likely combination of events when livestock are present. Emergence from seeds transported into grasslands by other fauna likely would be low, unless seeds were deposited in areas where grasses had been defoliated.Prosopis survival was comparably high in dung and bare seed placements after one growing season. survival of seedlings present two weeks after seed dissemination ranged from 74 to 97% at the end of the second growing season. Seedling survival and shoot development (biomass, leaf area and height) were similar on LTP and LTG sites, regardless of the level of herbaceous defoliation or seed placement. In addition, the magnitude and patterns of net photosynthesis, stomatal conductance and xylem water potential were comparable among one-year-old seedtings on ND, MD and HD plots, even though differences in herbaceous species composition and above- and below-ground biomass between these treatments were substantial. Such data suggest competition for soil resources between grasses andProsopis may be minimal early in the life cycle ofProsopis. High rates ofProsopis emergence and establishment on LTP-MD plots are counter to the widespread assumption that long-term and/or heavy grazing is requisite forProsopis encroachment into grasslands. Results are discussed with regard to factors contributing to the recent, widespread invasion of this woody legume into grasslands of southwestern North America.Abbreviations LTG long-term grazed - LTP long-term protected from grazing - ND non-defoliated - MD moderate defoliation - HD heavy defoliation  相似文献   

10.
许皓  李彦  邹婷  谢静霞  蒋礼学 《生态学报》2007,27(12):5019-5028
随着全球变化的加剧,降水改变正导致荒漠生态系统中植物用水策略的适应性变化;对降水变化响应的种间差异性影响着荒漠植物群落组成。研究将生理生态与个体形态尺度相结合,调查中亚荒漠关键种梭梭Haloxylon ammodendron对降水变化导致的自然生境中水分条件改变的响应与适应。实验于2005年生长期开展,在古尔班通古特沙漠南缘原始盐生旱生荒漠中设置3个降水梯度(自然、双倍和无降水);观测并比较不同降水条件下光合作用、蒸腾作用、叶水势、水分利用效率、地上生物量累积和根系分布的变化。结果表明,梭梭主要利用降水形成的浅层土壤水维持生存;有效的形态调节和较强的气孔控制是其维持光合能力以及适应降水变化的主要机制;降水增多对其产生正效应,预示着梭梭可能在未来种间竞争和群落演替中占有优势。  相似文献   

11.
李浩  胡顺军  朱海  李茜倩 《生态学报》2017,37(21):7187-7196
利用TDP热扩散式茎流计,结合自动气象站,对古尔班通古特沙漠南缘原生梭梭的树干液流及环境因子进行连续监测,分析了梭梭树干液流对环境要素的响应,建立了生长季梭梭树干液流与环境因子的关系,估算出梭梭群落的日、季耗水量。结果表明:(1)液流速率日变化主要为单峰曲线,夏季偶有出现双峰曲线,不同季节间的液流速率大小差异显著,夏季树干液流启动早,峰值出现早,夜间持续有微弱的液流;(2)梭梭树干瞬时液流速率与风速、净辐射、空气温度、饱和水汽压亏缺值等因素呈显著正相关,与实际水汽压和空气湿度呈极显著负相关,影响梭梭树干瞬时液流速率变化的关键因子是净辐射和饱和水汽压亏缺值是导致树干液流速率瞬时变化的关键因子;(3)梭梭树干日均液流速率与净辐射、空气温度、实际水汽压、土壤含水率和土壤温度等呈极显著正相关,与空气湿度等呈极显著负相关,与风速相关性不显著,影响梭梭日均液流速率变化的关键因子是净辐射、饱和水汽压亏缺和空气温度。  相似文献   

12.
Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C4 bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO2 response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.  相似文献   

13.
Summary Plant and soil water relationships in a typical nebraska Sandhills prairie were examined to 1) explain the observed distribution patterns of several dominant grasses along a topographic gradient, and 2) show how spatial and temporal variations in soil moisture are critical to community organization on a sandy substrate. An experimental transect encompassing the major community and soil types along a steep, west-facing vegetated dune was established. Maximum available water was shown to be significantly higher in the fine textured surface soils of the lowland sites than the coarse textured sands of the dune sites. Seasonal (1979) patterns of available soil moisture of the sampling sites on the transect showed that in the upper elevation dune sands, moisture was available in the entire profile with surface depletions not occurring until mid to late summer. In contrast, moisture in the surface 60–80 cm in the fine textured lowland soils was exhausted by early to mid-summer with the entire profile nearly dry by late summer. Deep-rooted, C4 species, Andropogon hallii and Calamovilfa longifolia which are common on upper, coarser sandy soils showed significantly greater water stress on fine textured soils than on dune sands. C3, shallowrooted species, Agropyron smithii, Stipa comata, and Koeleria cristata always experienced lower mid-day and predawn leaf water potentials than the C4 species. The C3 species, with the exception of Koeleria are most abundant on finer textured soils that provide substantial moisture during their peak activity in the spring. It appears that the C4 species show more conservative water use patterns than the C3 species as significantly lower leaf conductances in the C4's were measured when soil water was abundant. The C3 species appear to be opportunistic with available water and rapidly deplete surface soil moisture as a result of high transpiration rates. These data suggest that the temporal and spatial distribution of available water along this gradient controls species distribution according to rooting morphology, photosynthetic physiology, and water deficits, incurred by transpirational losses. Competitive interactions between species that utilize soil moisture differently may be an important factor in community organization.  相似文献   

14.

Key message

Physiological characteristics except WUE of H. ammodendron have obvious response to rainfall pulses of 6–12 mm, and rainfall in this range at least is “effective” precipitation for H. ammodendron.

Abstract

In water-limited ecosystems, pulses of rainfall can trigger a cascade of plant physiological responses. Small precipitation events account for a large proportion of the precipitation received in arid regions. Their potential ecological importance, however, has previously been ignored. Here the responses of the physiological characteristics of Haloxylon ammodendron (H. ammodendron) to rainfall were evaluated by rainfall manipulative experiments during the growing season of 2012 in the desert region of Northwestern China. Net Photosynthesis rate (P n), transpiration (Tr), water use efficiency (WUE), stomatal conductance (G s), internal concentration of CO2 (C i), sap flow, leaf water potential (Ψ), and soil volumetric water content (SVWC) were monitored throughout the experimental period. The results showed that the water status of H. ammodendron is highly sensitive to rainfall pulses. P n, Tr, and G s increased with rainfall and then decreased gradually after rainfall. WUE decreases after rainfall and increases in times of increasing drought, although within a narrow range. H. ammodendron has a special buffering ability induced by harsh environmental conditions, particularly the rainfall patterns. Collectively, a 6-mm or greater rainfall amount is “effective” precipitation for H. ammodendron from the perspective of plant physiology. This study result is essential to the theories and practice of combating desertification.  相似文献   

15.
Rambal  S. 《Plant Ecology》1992,(1):147-153
A boundary line analysis of the scatterplot relating pre-dawn leaf water potential to pre-dawn minus minimum leaf water potential was applied to study the efficiency of the Mediterranean evergreen oak species to buffer the effects of variability in water resources. The results are discussed in term of stomatal regulation and changes in soil-to-leaf hydraulic conductance of water flow, both induced by changes in leaf water potential. For this purpose, we used data for leaf water potential measured in three stands of Quercus ilex across a soil water availability gradient in Southern France, and two others obtained in California and Arizona for Quercus turbinella and Portugal for Quercus coccifera. A classification of plant responses from mesic to xeric sites is proposed.  相似文献   

16.
许皓  李彦  邹婷  谢静霞  蒋礼学 《生态学报》2007,27(12):5019-5028
随着全球变化的加剧,降水改变正导致荒漠生态系统中植物用水策略的适应性变化;对降水变化响应的种间差异性影响着荒漠植物群落组成。研究将生理生态与个体形态尺度相结合,调查中亚荒漠关键种梭梭Haloxylon ammodendron对降水变化导致的自然生境中水分条件改变的响应与适应。实验于2005年生长期开展,在古尔班通古特沙漠南缘原始盐生旱生荒漠中设置3个降水梯度(自然、双倍和无降水);观测并比较不同降水条件下光合作用、蒸腾作用、叶水势、水分利用效率、地上生物量累积和根系分布的变化。结果表明,梭梭主要利用降水形成的浅层土壤水维持生存;有效的形态调节和较强的气孔控制是其维持光合能力以及适应降水变化的主要机制;降水增多对其产生正效应,预示着梭梭可能在未来种间竞争和群落演替中占有优势。  相似文献   

17.
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture or evaporative demand through long-term acclimation, an experiment was carried on cotton plants (Gossypium herbaceum L.), where three grades of soil texture and three grades of evaporative demand were applied for the whole life cycle of the plants. Plants were harvested 50 and 90 d (fully grown) after sowing and root length and leaf area measured. At 90 d hydraulic conductance was measured as the ratio of sap flow (measured with sap flow sensors or gravimetrically) and water potential. Results showed that for plants grown at the same evaporative demand, those in sandy soil, where root-specific hydraulic conductance was low, developed more absorbing roots than those grown in heavy-textured soil, where root specific conductance was high. This resulted in the same leaf specific hydraulic conductance (1.8 × 10−4 kg s−1 Mpa−1 m−2) for all three soils. For plants grown in the same sandy soil, those subjected to strong evaporative demand developed more absorbing roots and higher leaf-specific hydraulic conductance than those grown under mild evaporative demand. It is concluded that when soil texture or atmospheric evaporative demand varies, plants co-ordinate their capacities for liquid phase and vapour phase water transport through long-term acclimation of the hydraulic system, or plastic morphological adaptation of the root/leaf ratio.  相似文献   

18.
内陆干旱区典型旱生植物蒸腾耗水量模拟研究   总被引:2,自引:0,他引:2  
张阳阳  陈喜  高满  刘秀强 《生态学报》2021,41(19):7751-7762
内陆干旱区植物耗水量是生态恢复和水资源管理的重要依据。参照甘肃省民勤县青土湖附近气象条件、干旱区典型植物生理特征以及土壤水力特征参数,采用Tardieu-Davies模型(气孔导度模型),计算在适宜和极限生态地下水埋深下7种典型植物生长季蒸腾耗水量,并与国内外研究成果对比,得出以下结论:适宜、极限生态地下水埋深下,7种植物生长季内平均蒸腾量分别为793、602 mm。不同植物蒸腾量差异大,适宜生态地下水位埋深下水生植物芦苇(Phragmites australis)、河岸带植被柽柳(Tamarix chinensis)蒸腾量最大,分别为1292、1147 mm;耐旱性强的荒漠植被梭梭(Haloxylon ammodendron)蒸腾量最小,为279 mm;其它植被盐节木(Halocnemum strobilaceum)(940 mm)、罗布麻(Poacynum hendersonii)(913 mm)、白刺(Nitraria tangutorum)(534 mm)、胡杨(Populus euphratica)(448 mm)蒸腾量依次减小。由适宜生态地下水埋深降低至极限生态地下水埋深时,植物蒸腾量平均减少24%。耐旱性强的梭梭、白刺减幅大,分别为53、35%;耐旱性弱的芦苇、柽柳减幅小,分别为19、13%。  相似文献   

19.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

20.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号