首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Following a phase of predominantly siliciclastic sedimentation in the Early and Middle Jurassic, a large-scale, low-latitude carbonate depositional system was established in the northern part of the Tabas Block, part of the central-east Iranian microplate, during the Callovian and persisted until the latest Oxfordian/Early Kimmeridgian. Running parallel to the present eastern block margin, a NNW/SSE-trending carbonate platform developed in an area characterized by reduced subsidence rates (Shotori Swell). The growth of this rimmed, flat-topped barrier platform strongly influenced the Upper Jurassic facies pattern and sedimentary history of the Tabas Block. The platform sediments, represented by the predominantly fine-grained carbonates of the Esfandiar Limestone Formation, pass eastward into slope to basin sediments of the Qal'eh Dokhtar Limestone Formation (platform-derived allochthonites, microbialites, and peri-platform muds). Towards the west, they interfinger with bedded limestones and marlstones (Kamar-e-Mehdi Formation), which were deposited in an extensive shelf lagoon. In a N−S direction, the Esfandiar Platform can be traced for about 170 km, in an E-W direction, the platform extended for at least 35–40 km. The width of the eastern slope of the platform is estimated at 10–15 km, the width of the western shelf lagoon varied considerably (>20–80 km). During the Late Callovian to Middle Oxfordian, the Esfandiar Platform flourished under arid climatic conditions and supplied the slope and basinal areas with large amounts of carbonates (suspended peri-platform muds and gravitational sediments). Export pulses of platform material, e.g. ooids and aggregate grains, into the slope and basinal system are interpreted as highstand shedding related to relative sealevel variations. The high-productivity phase was terminated in the Late Oxfordian when the eastern platform areas drowned and homogeneous deep water marls of the Upper Oxfordian to Kimmeridgian Korond Formation onlapped both the Qal'eh Dokhtar Limestone Formation and the drowned Esfandiar Limestone Formation. Tectonic instability, probably caused by faulting at the margins of the Tabas Block in connection with rotational movements of the east-central Iranian block assemblage, was responsible for the partial drowning of the eastern platform areas. In some areas, relicts of the platform persisted to produce shallow-water sediments into the Kimmeridgian.  相似文献   

2.
3.
Summary The Sikhor Formation (new) is a predominantly siliciclastic sediment package intercalated between the marly-silty Baghamshah Formation (below) and the calcareous Esfandiar Limestone and Qal'eh Dokhtar Limestone formations (above). All stratigraphic evidence points to an Early Callovian age of the formation. The Sikhor Formation is restricted to the southern and central Shotori Mountains and consists of two members: The Kuh-e-Neygu Member (new) is composed of fluvialdeltaic conglomerates, sandstones, and siltstones grading into marly silt of the Baghamshah Formation. The overlying Majd Member (new) is characterised by mixed siliciclastic-carbonate sediments that record the interfingering of carbonate ramp sediments with fluvialdeltaic sands and silts. Evidence of erosional truncation of the underlying Baghamshah Formation and confinement of the siliciclastic sediment to a comparatively narrow, NNW-SSE elongated strip suggest that the formation had its origin in the asymmetric uplift of a westdipping tilted fault block in the southern Shotori Mountains that shed its sediment predominantly in a northern and eastern direction. After erosional levelling, the former uplifted areas were overgrown by the highly productive Esfandiar Carbonate Platform. The Sikhor Formation thus is evidence of an extensional tectonic pulse in the early Callovian and underlines that this area of the Tabas Block was a tectonically highly unstable area during most of the Jurassic.  相似文献   

4.
A carbonate ramp in the shallow‐marine northwestern part of the Central Tarim Uplift, Bachu, NW China, exhibits an extraordinary Late Ordovician reef complex along the Lianglitag Mountains, exposed for a distance of about 25 km. Seven localities within the ‘Middle Red Limestone’ of the Upper Member of the Lianglitag Formation (Katian, Late Ordovician) illustrated the changes in biofacies and lithofacies: northern, seaward‐directed patch reefs are replaced towards the south by coeval grain banks. The patch reef units are dominated by microbial and calcareous algal components. The reefs at the northernmost locality are knoll‐shaped, kalyptra‐shaped or irregularly shaped with sizes of individual reefs increasing from about 2 m in height and diameter. Stratigraphically upward, reefs notably expand to larger structures by several mounds coalescing; they are generally about 10 m thick and tens of metres in lateral extent. The maximum thickness of the main patch reef is more than 30 m, and its diameter is around 100 m. The reefal units turn into biostromes with gentler relief southward and still further south grade into banks composed of peloids and coated grains. The southernmost locality is still a shallow‐water bank, and the coastline is not documented in the study area. The present evidence indicates that the Late Ordovician palaeo‐oceanography provided a number of environments for the optimal growth of carbonate build‐ups; microbial‐calcareous algal communities could thrive in areas where the innovative metazoan reef frameworks consisting of corals and stromatoporoids did not play a significant role. The ramp morphology, especially changes in water depth, controlled the configuration of the reef complex.  相似文献   

5.
Platform carbonate sediments of Oligocene–Miocene age (Asmari Formation) in the Zagros Basin (SW Iran) have been investigated in order to determine their paleoecology and depositional environment. The Zagros Basin is the result of the opening and closure of the Neo-Tethys Ocean along the northeastern border of the Arabian Plate. The thick sedimentary sequences of the Zagros Basin contain rocks ranging in age from Cambrian to recent. The geological evidence suggests that the region was part of a passive continental margin, which subsequently underwent rifting in the Permo-Trias and collision in the Late Tertiary. The Asmari carbonate system was dominated by foraminifera and corallinacean assemblage. Based on the distribution of the larger foraminifera, four assemblage zones have been recognised. Facies analysis allowed the recognition of nine microfacies types that are grouped into three depositional environments that correspond to the inner, middle and outer shelf. The biota assemblage of the Asmari Formation suggests that carbonate sedimentation took place in tropical waters and oligotrophic to slightly mesotrophic conditions. Our detailed analysis of microfacies and paleoecology shows that the Asmari Formation deposited on a carbonate open shelf dominated by heterozoan and, subordinately, photozoan skeletal assemblage.  相似文献   

6.
Chai Peng Lee   《Palaeoworld》2006,15(3-4):242
The Cambrian of Malaysia is best represented by the quartzose Machinchang Formation in Langkawi, Kedah, northwest Peninsular Malaysia. It is divisible into three members. The oldest Hulor Member (>1260 m thick) is a coarsening upward succession of rhythmically interlayered graded siltstone, mudstone and clayey sandstone deposited as a prograded prodelta deposit. The middle Chinchin Member (>1575 m thick) is a fining upward succession of quartzose conglomerate and sandstone subdivisible into three beds. The lowest Anak Datai Bed (575 m thick) is made up of graded bedded, cross-bedded pebbly sandstone and conglomerate of estuarine channel-fills and thin to thick beds of low angle, planar cross-bedded sandstone with heavy mineral concentrations deposited as upper shoreface to beach deposits. The Temurun Bed (340 m thick) is of upper estuarine deposits of wavy-bedded sandstone and pebbly sandstone, fine tuffs and thin argillites. The upper Tengkorak Bed (>200 m thick) spans the Cambro-Ordovician boundary and consists of thick tabular bedded upper shoreface to beach fine sandstone with interbeds of fine rippled sandstone, acid tuff beds and mudstone belonging to a series of barrier beach complexes. The youngest Jemurok Member (>420 m thick) is a fining upward succession of siltstone, mudstone and hummocky cross-bedded sandstone and thin limestone deposited in storm influenced shoreface to back barrier lagoon with tidal channel environments. It has fragmentary trilobites, brachiopods, abundant trace fossils and the Kinneyian wrinkle marks.The overall sequence belongs to a highly destructive, wave-influenced delta deposit with a series of preserved beach-ridge complexes. Clastic sedimentation was reduced by peneplation of the source area as shown by the finer and thinner beds that grade into limestone of the overlying Ordovician Setul Formation.  相似文献   

7.
Li Yue  Steve Kershaw 《Facies》2003,48(1):269-284
Summary Early Silurian reef reconstruction on the Yangtze Platform, in the northern part of the South China Block, is preceded by a combination of regional and global processes. During most of Ashgill time (Late Ordovician), the area was dominated by Wufeng Formation deep water graptolitic black shales. Reefs largely disappeard in the middle of the Ashgill Stage, from the northwestern margin of Cathaysian Land (southeastern South China Block), in advance of the Late Ordovician glaciation and mass extinction, due to regional sea-level changes and regional uplift, unrelated to the mass extinction itselt. Late Ordovician microbial mudmound occurrence is also found in the western margin of the Yangtze Platform, its age corresponding to theDicellograptus complexus graptolite biozone of pre-extinction time. On the Yangtze Platform, a thin, non-reef-bearing carbonate, the Kuanyinchiao Formation (=Nancheng Formation in some sites), thickness generally no more than 1m, occurs near several landmasses as a result of Hirnantian regression. Reappearance of the earliest Silurian carbonates consisting of rare skeletal lenses in the upper part of Lungmachi Formation, are correlated to theacensus graptolite biozone, early Rhuddanian of Shiqian, northeastern Guizhou, near Qianzhong Land. Carbonate sediments gradually developed into beds rich in brachiopods and crinoids in the lower part of Xiangshuyuan Formation, middle Rhuddanian. In the middle part of Xiangshuyan Formation, biostromes, containing abundant and high diversity benthic faunas such as corals, crinoids and brachiopods, show beginnings of reconstruction of reef facies. Substantial reef recovery occurred in the upper part of Xiangshuyuan Formation, lower Aeronian, as small patch reefs and biostromes. During the late Aeronian, carbonate sediments, especially reefs and reef-related facies, expanded on the upper Yangtze Platform, and radiation of reefs occurred in Ningqiang Formation, upper Telychian. The long period of reef recovery, taking several million years, remains difficult to explain, because redistribution of any refugia faunas would be expected to take place soon after the extinction. Reefs and reef-related facies subsequently declined after Telychian time due to regional uplift of the major portion of the Yangtze Platform. Carbonate facies are therefore uncommon in South China during the rest of Silurian time.  相似文献   

8.
The Asmari Formation, a thick carbonate succession of the Oligo-Miocene in Zagros Mountains (southwest Iran), has been studied to determine its microfacies, paleoenvironments and sedimentary sequences. Detailed petrographic analysis of the deposits led to the recognition of 10 microfacies types. In addition, five major depositional environments were identified in the Asmari Formation. These include tidal flat, shelf lagoon, shoal, slope and basin environmental settings and are interpreted as a carbonate platform developed in an open shelf situation but without effective barriers separating the platform from the open ocean. The Asmari carbonate succession consists of four, thick shallowing-upward sequences (third-order cycles). No major hiatuses were recognized between these cycles. Therefore, the contacts are interpreted as SB2 sequence boundary types. The Pabdeh Formation, the deeper marine facies equivalent of the Asmari Limestone is interpreted to be deposited in an outer slope-basin environment. The microfacies of the Pabdeh Formation shows similarities to the Asmari Formation.  相似文献   

9.
The Yecheng profile, lying in the southwest Tarim Basin at the northern foot of the West Kunlun Mountains, comprises 4.5 km of conformable Miocene to Pliocene strata. The lower part of the section, the Wuqia Group, is composed of interbedded red mudstone and pale-coloured fine sandstone with a thickness of 1700 m. The Artux Formation is 800 m thick and composed of mudstone, sandstone with thin gravel and conglomerate beds. The upper part of the section, known as the Xiyu Formation, consists of 2000 m of cobble and boulder conglomerate intercalated with massive siltstone lenses.Compositional study of the sandstones in the Wuqia Group and Artux Formation indicates that they were sourced from low relief areas of the Kunlun region and probably further south from Tibet. The provenance of the conglomerate in the Xiyu Formation is the West Kunlun Mountains. Compositional trends within the conglomerate indicate that Upper Palaeozoic marine, and Mesozoic to Tertiary terrestrial silicic rocks were eroded first, along with the Proterozoic to Lower Palaeozoic Proto-Tethys metasedimentary rocks. Erosion into deeper levels of the Kunlun Mountains provided igneous and high-grade metamorphic sediment, which first appears 640 m above the base of the Xiyu Formation.Lithofacies change from fine-grained mudstone and sandstone to coarse clasts coincides with the onset of aeolian sedimentation, indicating major shift of regional palaeoclimatic regime. Although climatic changes may have played an important role in controlling the sedimentary regime worldwide, our study of the lithostratigraphy and petrography of the Yecheng section suggests that the lithofacies change recorded the progressive unroofing history of the source rocks in the West Kunlun Mountains.  相似文献   

10.
Limestone deposits with columnar to lenticular geometry (max. 3.2 m in height and 1.5 m in diameter) occur within the uppermost part of the Ganigobis Shale Member, a marine mudstone unit capping the second deglaciation sequence of the glaciomarine Dwyka Group in southern Namibia. The limestones mainly consist of four authigenic carbonate phases (microspar, banded/botryoidal cement, yellow calcite, spheroidal calcite). Extremely negative δ13C values (as low as ? 51‰ VPDB) indicate a hydrocarbon-derived origin of the carbonates with biogenic methane being the most likely carbon source. The limestones contain a low-diversity but high-abundance faunal assemblage of tubular fossils. These fossils closely resemble the tubes of modern and fossil seep-dwelling vestimentiferan tube worms in terms of size, shape, arrangement, and taphonomical patterns.  相似文献   

11.
The lithostratigraphy and biostratigraphy of the Paleocene and Eocene formations have been reconsidered on the basis of 18 dated boreholes that intersect the Basque Country, Peyrehorade, Sainte-Suzanne and Sauvelade allochthonous tectonic units, as well as the autochthonous units of the Pey-Saint-Lon anticline, the Arzacq Basin and the North Pyrenean Trough. Correlation of the formations identified in the boreholes and at outcrop has made it possible to outline the sedimentary evolution of this region during the Early Paleogene and to date the various stages of Pyrenean compression on the basis of sedimentary gaps and syntectonic detrital input. The Lasseube Formation is present over the entire study area. Sedimentation becomes differentiated during the Late Selandian-Early Ypresian period. In the North Pyrenean Trough and in the Peyrehorade, Sainte-Suzanne and Sauvelade units, the detrital-clayey Pont-Labau Formation is well developed and all its members are represented (Guillempau, Latapy, Néez, Libaros and Artigueloutan; zones upper P 3b-P 6b; upper NP 5-NP 11). A sedimentary gap showing erosion, and involving zones upper P 3b-upper P 4a and upper NP 5-NP 7, characterises the Basque units, the Pey-Saint-Lon anticline and the western part of the Arzacq Basin. Sedimentation recommences in zone P 8 with middle-bathyal deposits of the Cassoua Member and then continues with the Artigueloutan Member (transition facies towards the Louts Formation) or limestone resembling that of the Meilhan Formation. The Gan Formation shows an east-west polarity. In the east, between the Sainte-Suzanne Unit and the North Pyrenean Trough, the formation is argillaceous with a dominant neritic character, apart from a circalittoral to epibathyal passage in its lower part (zone P 7) containing numerous planktonic foraminifera. The formation is of a detrital and carbonate nature in the west (Sainte-Marie-de-Gosse 1). The bathyal Donzacq Formation appears to transgress a previously deformed surface. Two domains existed during the Lutetian: a continental to neritic domain in the south and a bathyal domain in the north (the Saint-Geours-d'Auribat and Miretrain formations) separated by a variably thick transition zone that is affected by thrust fronts. Two new formations - the Orthez and Sorde-l'Abbaye formations - are proposed, and the Marly limestone formation of Saint-Barthélémy (Douvillé, 1905) is redefined. The Orthez Formation (Sauvelade Unit) is composed of marl and continental conglomerate with neritic carbonate interbedding and belongs to the sub-zones NP 15a and b. The Sorde-l'Abbaye Formation (Peyrehorade Unit and the Basque units p. p.) is composed of neritic carbonate sediments (Lutetian-Priabonian). The Saint-Barthélémy Formation is made up of syntectonic conglomerate, turbiditic limestone and pelagic marl in the central part of the Basque units (NP 15a-NP 16). The Bartonian and Priabonian stages are characterised by carbonate sediments in the Arzacq Basin (Siest Formation). Its base is diachronous: Upper Lutetian (zone SB 16) in the east and Late Bartonian grading to Priabonian in the west (zones SB 17/18 and SB 19). The sediments are argillaceous (Côte des Basques Formation) along the Atlantic coast, in the central part of the Basque units and in the Bayonne-Cauneille syncline. Major thickness variations reflect tectonic phases at the top of the Lasseube Formation in the north (erosion pre NP 8), the Néez Member (NP 7/NP 8 boundary), the Artigueloutan Member (NP 11/NP 12 boundary), and the Gan Formation (P 8/P 9 boundary). The syntectonic conglomerate and breccia indicate the development of thrust fronts in the Libaros Member (NP 8), at the base of the Pillardou and Artigueloutan members (NP 9b, c-NP 10), in the Saint-Geours-d'Auribat Formation (NP 14b) and in the Orthez and Saint-Barthélémy formations (between zones NP 15a and NP 16).  相似文献   

12.
In the Jajarm area (eastern Alborz Mountains, NE Iran) the ?Upper Triassic — Lower Bajocian siliciclastic Shemshak Formation is up to 2000 m thick. Whereas the lower third of the formation is nearly exclusively non-marine, the upper two-thirds are fully marine. The middle part is characterized by several levels containing a relatively diverse and well preserved assemblage of ammonites of the Toarcian to Aalenian stages. Two sections of the ammonite-bearing strata, spaced 20 km, are presented and correlated by means of ammonite biostratigraphy. The ammonite fauna consists of 27 taxa, some of which are recorded for the first time from the Alborz Mountains. The ammonites are briefly described and their palaeobiogeographic context is reviewed. The ammonite fauna of the Shemshak Formation at Jajarm, as elsewhere in North and Central Iran, is exclusively Northwestern Tethyan in character and is closely related to the faunas of Northwestern and Central Europe.  相似文献   

13.
An integrated study of the litho-, bio-, and microfacies of several sections has greatly improved the knowledge on the stratigraphy and depositional setting of the Coniacian to Campanian Haftoman Formation in the Khur area of the northern Yazd Block, Central Iran. Generally, the Haftoman Formation rests on a major tectonic unconformity and commences with a basal conglomerate followed by up to 900 m of shallow-water carbonates with local red sandstone intercalations. Five different depositional environments (from distal to proximal) characterize the facies associations (FA) of the Haftoman Formation: silty, spiculitic wackestone (proximal basin, FA I), bio-/intraclastic wacke-, pack-, and grainstone (marginal shoals, FA II), bioclastic rud-/float-/boundstone (outer platform, FA III), silty mud-/wackestone (lagoonal inner platform, FA IV), and sandstone/sandy limestone (areas close to the mouth of ephemeral streams, FA V). The litho-, micro-, and biofacies of the Haftoman Formation are typical for an epeiric carbonate platform characterized by an arid climate and lagoonal circulation, resulting in nutrient-poor waters, warm temperatures, and high salinities. The Haftoman Platform was attached to an emergent arid hinterland formed by the Anarak Metamorphic Complex to the west and southwest of the study area. Unconformity-bounded depositional units indicate sea-level changes that may correspond to 400-kyr high-frequency sequences but further studies are needed to fully exploit the potential of sequence stratigraphy for regional and inter-regional correlation of the Haftoman Formation.  相似文献   

14.
长江源区晚三叠世伟齿蛤科(双壳类)一新属--Quemocuomegalodon   总被引:9,自引:0,他引:9  
记述青海唐古拉山北坡雀莫错附近晚三叠世甲丕拉组灰岩中的一类铰齿构造特殊的伟齿蛤类化石,建立新属Quemocuomegalodon gen.nov.及Q.orientus gen.et sp.nov.和Q.longitatus gen.et sp.nov.2新种,并简述伟齿蛤类的生活习性。  相似文献   

15.
Permian–Triassic boundary sections in the Julfa (NW Iran) and Abadeh (Central Iran) regions display a succession of three characteristic rock units, (1) the Paratirolites Limestone with the mass extinction horizon at its top, (2) the ‘Boundary Clay’, and (3) the earliest Triassic Elikah Formation with the conodont P–Tr boundary at its base. The carbonate microfacies reveals a facies change, in the sections near Julfa, within the Paratirolites Limestone with an increasing number of intraclasts, Fe–Mn crusts, and biogenic encrustation. A decline in carbonate accumulation occurs towards the top of the unit with a sponge packstone in the sections, and finally resulting in a complete demise of the carbonate factory. The succession of the ‘Boundary Clay’ differs in the two regions; thin horizons of sponge packstone are present in the Julfa region and ‘calcite fans’ of probably inorganic origin in the Abadeh Region. The skeletal carbonate factory of the Late Permian was restored with the deposition of microbial carbonates at the base of the Elikah Formation, where densely laminated bindstone, floatstone with sparry calcite spheres, and oncoid wackestone/floatstone predominate.  相似文献   

16.
Summary The “problematic microfossil”Probolocuspis espahkensis, described as, “incertae sedis” by Br?nnimann, Zaninetti, Moshtaghian and Huber (1974) from the Carnian Espahk Formation near the small village of Espahk (Tabas area, NE Iran) represents a dasycladacean alga attributed preliminary to the Family Acetabulariaceae, Tribe Clypeineae. The holotype ofProbolocuspis espahkensis, designated by Br?nnimann et al. (1974), is only a part of the alga. Contribution to the Triassic Paleontology of Iran No. 8; for No. 7: see Senowbari-Daryan, B. (2002); Jb. Geol. Bundesanst., 143/I, Wien  相似文献   

17.
塔里木板块中央隆起区的塔中低隆带上奥陶统凯迪阶良里塔格组礁相群落是晚奥陶世生物礁演化阶段的例证。该组分为5个岩性段。塔中16井区位于塔中Ⅰ号断裂坡折带向台地内部延伸的缓坡区,海水深度和水流能量显著控制碳酸盐岩的岩相分布。良里塔格组所赋存的典型动物格架礁集中于台地边缘的高能区,而塔中16井区不属于大型动物格架礁建造的富集区域,其早期多以低能带沉积为主,特别是塔中16井和塔中166井灰泥坪常见;晚期常见高能滩相和灰泥丘以及近礁沉积,可划归为台缘坡折带大型格架礁建造向台内的延伸区,这里的水深和能量变化更频繁。偏西北的井在良二段沉积之后抬升较早,东南的塔中161井则保存部分良一段沉积。  相似文献   

18.
The siliciclastic, up to 4,000 m thick Upper Triassic–Bajocian Shemshak Formation is widespread across the Iran Plate, especially in the Alborz Mountains of northern Iran. In contrast to its lower, generally non-marine part, the upper part is marine. Based on the Tazareh section of the eastern Alborz, an integrated analysis of this marine interval is presented. The 1,700 m thick marine sedimentary succession records a gradual deepening from inner to mid and outer shelf environments from the Middle Toarcian to early Late Aalenian. During the Late Aalenian–Early Bajocian, the trend was reversed and infilling of the basin by a large delta system occurred. This general facies development reflects a nearly symmetrical transgressive–regressive (T–R) megacycle, terminated by the inter-regional mid-Cimmerian tectonic event. A renewed transgression in the early Late Bajocian initiated a subsequent sedimentary megacycle. The bioturbated mid and outer shelf sediments contain a low to moderately diverse benthic fauna dominated by deep burrowing bivalves, often preserved in the growth position. A hierarchy of four orders of sedimentary cycles can be recognized (parasequences, parasequence sets, unconformity-bounded third-order depositional sequences, and the 13 ma long second-order T–R megacycle). A regional correlation with the Jajarm area (200 km to the east) shows a very similar temporal facies pattern of the upper Shemshak Formation. The eastern Alborz T–R cycle is completely out-of-phase with other (eustatic) sea-level curves, suggesting regional tectonic control. Rough estimates of subsidence rates give an average value of 126 m/ma. However, much higher values for the Aalenian (230 m/ma), particularly the Late Aalenian (700 m/ma), indicate a distinct increase in subsidence rate towards the Early Bajocian mid-Cimmerian tectonic event. These high subsidence rates suggest that the sediments of the Shemshak Formation of the eastern Alborz formed in a (young) rift basin.  相似文献   

19.
The Late Precambrian Porsanger Dolomite Formation, occurring beneath the Varanger tillite in Arctic Norway, consists of various dolomitic lithofacies of subtidal, intertidal and supratidal environments. The lithofacies belong to three facies associations, A, B and C, which are repeated several times in the sequence. Facies association A comprises cryptalgal laminites, dolomicrites and thin-bedded grainstones and flakestones. The environment represented by this facies is broadly intertidal (locally supratidal) flat, with the interbedded carbonate sands representing storm deposits. Facies association B, of shallow subtidal to low intertidal origin, comprises cross-bedded carbonate sands (flakestones, grainstones and oolites) forming units up to 10 m thick. Small stromatolite bioherms (5 m wide, 2 m high) are locally developed within these “high-energy” deposits. Facies association C formed in a subtidal environment consists of laterally extensive (over 20 km) uniformly developed stromatolite biostromes, up to 16 m thick. The biostromes, locally divided by channels filled with grainstones and intraformational conglomerates, are composed of cylindrical and turbinate columnar (SH-V and SH-C) and digitate stromatolites (Gymnosolen, Inseria and Tungussia) in their lower parts. Larger, bulbous (SH-C and LLH-C) and conical (Conophyton) stromatolites occur in the upper parts, as well as the branching conophyte, Jacutophyton.All of the biostromes are always developed above cross-bedded carbonate sands (facies association B). A broadly symmetrical cyclic pattern, A B C B A, of tidal flat deposits (facies association A) passing up into carbonate sands (B), into biostrome (C), overlain by carbonate sands (B) and then tidal flat deposits (A), is repeated four times in the Porsanger Dolomite sequence. The pattern is interpreted in terms of two controls on sedimentation: (1) a slow transgressive phase followed by (2) depositional regression. The former (1) took place either through eustatic sea-level rise or more likely through accelerated subsidence because of tectonic instability and compaction of underlying sediments. This resulted in the sequence: tidal flat sediments, low intertidal/shallow subtidal carbonate sands, subtidal biostrome (A, B, C). Depositional regression through prograding tidal flats, generated the shoaling upward part of the cycle: biostrome, carbonate sands, tidal flat sediments (C, B, A).  相似文献   

20.
Benthic foraminifera are described for the first time from the Gibraltar Limestone Formation of the Rock of Gibraltar. The new species Siphovalvulina colomiS. gibraltarensisRiyadhella praeregularis occur with Duotaxis metula Kristan, Everticyclammina praevirguliana Fugagnoli, Siphovalvulina sp.,an atypically early example of Textulariopsis sp., and Nodosaria sp. Microflora are present as the probable cyanobacterium Cayeuxia ?piae Frollo, the alga Palaeodasycladus ?mediterraneus (Pia), and the disputed alga Thaumatoporella ?parvovesiculifera (Raineri). The foraminifera compare most closely with poorly‐known taxa from Italy, Spain and Morocco, and are consistent with an Early Jurassic (Sinemurian) age for the upper part of the &62;460‐m‐thick Gibraltar Limestone. Most are textulariids and more primitive than species well known from the later Early Jurassic (Pliensbachian) of the Mediterranean region, especially Morocco and Italy. The biota as a whole is characteristic of inner carbonate platform environments widespread along the rifted western margins of the Early Jurassic Tethys, notably those recorded from Morocco, Italy and Greece as well as southern Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号