首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

3.
4.
5.
Dictyochophyceae (silicoflagellates) are unicellular freshwater and marine algae (Heterokontophyta, stramenopiles). Despite their abundance in global oceans and potential ecological significance, discovered in recent years, neither nuclear nor organellar genomes of representatives of this group were sequenced until now. Here, we present the first complete plastid genome sequences of Dictyochophyceae, obtained from four species: Dictyocha speculum, Rhizochromulina marina, Florenciella parvula and Pseudopedinella elastica. Despite their comparable size and genetic content, these four plastid genomes exhibit variability in their organization: plastid genomes of F. parvula and P. elastica possess conventional quadripartite structure with a pair of inverted repeats, R. marina instead possesses two direct repeats with the same orientation and D. speculum possesses no repeats at all. We also observed a number of unusual traits in the plastid genome of D. speculum, including expansion of the intergenic regions, presence of an intron in the otherwise non‐intron‐bearing psaA gene, and an additional copy of the large subunit of RuBisCO gene (rbcL), the last of which has never been observed in any plastid genome. We conclude that despite noticeable gene content similarities between the plastid genomes of Dictyochophyceae and their relatives (pelagophytes, diatoms), the number of distinctive features observed in this lineage strongly suggests that additional taxa require further investigation.  相似文献   

6.
Contrary to the classical view, a large amount of non-coding DNA seems to be selectively constrained in Drosophila and other species. Here, using Drosophila miranda BAC sequences and the Drosophila pseudoobscura genome sequence, we aligned coding and non-coding sequences between D. pseudoobscura and D. miranda, and investigated their patterns of evolution. We found two patterns that have previously been observed in comparisons between Drosophila melanogaster and its relatives. First, there is a negative correlation between intron divergence and intron length, suggesting that longer non-coding sequences may contain more regulatory elements than shorter sequences. Our other main finding is a negative correlation between the rate of non-synonymous substitutions (d N) and codon usage bias (F op), showing that fast-evolving genes have a lower codon usage bias, consistent with strong positive selection interfering with weak selection for codon usage.  相似文献   

7.
8.
The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon–intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon–intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon–intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3′-ends.  相似文献   

9.
10.
A new xylanase gene, named xyn186, was cloned by the genome-walking PCR method from the Alternaria sp. HB186. The sequence of xyn186 contains a 748 bp open reading frame separated by one intron with the size of 52 bp. The cDNA was obtained by DpnI-mediated intron deletion. The cDNA was cloned into pHBM905A and transformed into Pichia pastoris GS115 to screen xylanase-secreting transformants on RBB-xylan plates. The molecular mass of the enzyme was estimated to be 23 kDa on SDS-PAGE. The optimal pH and temperature of the purified enzyme is 6 and 50°C, respectively. The K m and V max valued for birchwood xylan are 1.404 mg ml−1 and 0.2748 mmol min−1 mg−1, respectively. The inhibitory effects of various metal ions were investigated, Cu2+ and Hg2+ ions inhibited most of the enzyme activity. The gene copy number of xyn186 in the genome of P. pastoris was estimated as two by the Real-time PCR. To date, xyn186 gene is the first xylanase gene cloned from the genus Alternaria.  相似文献   

11.
H. Mao  X. Wang  Y. Fan  D. Cheng  K. Chen  S. Liu  S. Xi  L. Wan  X. Li  J. Ren 《Animal genetics》2019,50(5):475-483
Ten indigenous chicken breeds were originally distributed in Jiangxi Province, China, and they define a critical component of Chinese chicken genetic resources. We have investigated the population genetics of seven Jiangxi chicken breeds using 600K chicken BeadChip SNP data. To provide a genome‐wide perspective for the population structure of all 10 Jiangxi chicken breeds, we herein genotyped 78 additional individuals from the seven breeds and 63 chickens from three uninvestigated breeds—Yugan Black (YG), Nancheng Black (NC) and Wanzai Yellow using 55K chicken SNP arrays. We then explored merged data of 17 101 SNPs from 235 individuals to infer the population structure of the 10 breeds. We showed that NC and YG are two regional populations of the same breed, as individuals from the two populations clustered together to form a branch separate from the other breeds in the neighbor‐joining tree, they always grouped together in multidimensional principal component analyses and they displayed an identical pattern of ancestral lineage composition. Hence, NC and YG should be considered a single breed in the state‐supported conservation scheme. Moreover, we conducted a genome scan for signatures of selection for black plumage. bayescan and hapflk analyses of two contrasting groups (three black‐feathered breeds vs. six non‐black‐feathered breeds) consistently detected 25 putative regions under selection. Nine pigmentation‐ associated genes (DCT, SLC24A5, SLC30A4, MYO5A, CYP19A1, NADK2, SLC45A2, GNAQ and DCP2) reside within these regions, and these genes are interesting candidates for black plumage and provide a starting point for further identification of causative mutations for black feathers in chicken.  相似文献   

12.
The tendency of ectotherms to get larger in the cold (Bergmann clines) has potentially great implications for individual performance and food web dynamics. The mechanistic drivers of this trend are not well understood, however. One fundamental question is to which extent variation in body size is attributed to variation in cell size, which again is related to genome size. In this study, we analyzed body and genome size in four species of marine calanoid copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Paraeuchaeta norvegica, with populations from both south Norwegian fjords and the High Arctic. The Calanus species showed typical interspecific Bergmann clines, and we assessed whether they also displayed similar intraspecific variations—and if correlation between genome size and body size differed between species. There were considerable inter‐ as well as intraspecific variations in body size and genome size, with the northernmost populations having the largest values of both variables within each species. Positive intraspecific relationships suggest a functional link between body and genome size, although its adaptiveness has not been settled. Impact of additional drivers like phylogeny or specific adaptations, however, was suggested by striking divergences in body size – genome size ratios among species. Thus, C. glacialis and C. hyperboreus, had fairly similar genome size despite very different body size, while P. norvegica, of similar body size as C. hyperboreus, had the largest genome sizes ever recorded from copepods. The inter‐ and intraspecific latitudinal body size clines suggest that climate change may have major impact on body size composition of keystone species in marine planktonic food webs.  相似文献   

13.
The Tibetan chicken (TBC), an indigenous chicken breed of the Tibetan Plateau, has adapted to its hypoxic, high‐altitude environment over hundreds of years. The objective of this study was to identify the polymorphisms and genes associated with adaptation to hypoxia in this chicken breed. In the present study, samples were collected during days 18–21 of the incubation period from both surviving chicks and dead embryos, all of which were hatched under hypoxic conditions. A genome‐wide association study was conducted using the Illumina iSelect 60K SNP array with a case–control design, in which the case group consisted of the dead chicken embryos (= 54) and controls were the surviving chicks (= 82). Four significant SNPs were detected at the genome‐wide level (< 0.05), and the results indicated that fork head box G1 (FOXG1) was the main candidate gene. The lead SNP NC_006092.4:g.33368893T>C was confirmed with a polymerase chain reaction‐restriction fragment length polymorphism analysis of 122 cases and 212 controls. A chi‐square test showed a significant association between NC_006092.4:g.33368893T>C and hatchability under hypoxic conditions (< 0.01). Our results revealed novel polymorphisms and a candidate gene associated with hypoxic adaptation, facilitating further study in this field.  相似文献   

14.
1. We used a zooplankton metacommunity to ask how dispersal, genetic drift and selection act to determine the local and regional distributions of trait variation. Since the formation of the lakes 80 years ago, cladoceran species have sorted into local assemblages that cluster by lake depth. Given this species sorting, we ask whether intraspecific variation in an ecologically important phenotypic trait – body size – has sorted as well. 2. We quantified changes in body size through time by measuring ephippia from D. pulicaria, D. dentifera and D. ambigua recovered from sediment cores from two lakes. We then estimated mean body size of contemporary populations of two competing species, Daphnia pulicaria and D. dentifera, in a laboratory common garden experiment. Finally, we used microsatellite loci to characterise genetic diversity and gene flow among local sites in the metacommunity. 3. Body size was variable both within and among years for the three species of Daphnia examined using sediment cores. For two lakes where we examined body size distributions through time, we observed a significant shift in body size of the first species to arrive after colonisation by other Daphnia species, which suggests selection has occurred historically. 4. Despite heritable variation in body size in the laboratory, evidence for trait sorting was only found for D. pulicaria, which was larger in deeper lakes. Mean body size varied among lakes, but did not sort relative to depth for D. dentifera. 5. Microsatellite data indicated that neutral genetic diversity was low in the region; only 27% of the individuals assayed were unique multi‐locus genotypes. We also found significant patterns of isolation by distance for both species. However, population structure was stronger in D. dentifera than in D. pulicaria. Hence, we conclude that a limited number of colonists have successfully invaded this metacommunity, and those genotypes arriving in this new region have experienced significant dispersal limitation among local sites. 6. Overall, while dispersal and selection have clearly led to the development of predictable community assemblages related to depth in this metacommunity, the distribution of phenotypic traits within species can differ substantially even between two trophically similar species. Our results highlight the complex roles of colonisation history, dispersal, selection and stochasticity in determining inter‐ and intra‐specific patterns in metacommunities.  相似文献   

15.
16.
Nam K  Ellegren H 《PLoS genetics》2012,8(5):e1002680
Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process.  相似文献   

17.
Allene oxide cyclase (AOC) is a key enzyme in the octadecanoid pathway of flowering plants that synthesizes 12-oxo-phytodienoic acid (OPDA), which is a biosynthetic precursor of the signal molecule jasmonic acid (JA). A database search of the Physcomitrella patens genome revealed the presence of an AOC gene unique from the two previously reported AOC genes, PpAOC1 and PpAOC2. After cloning the identified AOC gene, designated PpAOC3, the obtained cDNA sequence (897 bp) was larger than the predicted AOC gene (765 bp) in the database because a speculated intron was not fully deleted. Although PpAOC3 did not display high similarity with AOC proteins from other species, recombinant PpAOC3 exhibited AOC activity and translocated to chloroplasts, as is observed for other AOC proteins. Notably, the expression profile of PpAOC3 differed from the other PpAOCs, as its expression in protonemata was higher than that in gametophores. Although the function of oxylipins such as OPDA and JA remains elusive in P. patens, further characterization of the enzymes in the octadecanoid pathway and the role of oxylipin will aid in the elucidation of physiological processes in this model bryophyte.  相似文献   

18.
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha‐proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein‐coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome‐wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad‐scale genome streamlining via loss of protein‐coding genes as well as noncoding, parasitic DNA elements.  相似文献   

19.
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.  相似文献   

20.
Reduction of genome size and gene shortening have been observed in a number of parasitic and mutualistic intracellular symbionts. Reduction of coding capacity is also a unifying principle in the evolutionary history of mitochondria, but little is known about the evolution of gene length in mitochondria. The genes for cytochrome c oxidase subunits I–III, cytochrome b, and the large and small subunit rRNAs are, with very few exceptions, always found on the mitochondrial genome. These resident mitochondrial genes can therefore be used to test whether the reduction in gene lengths observed in a number of intracellular symbionts is also seen in mitochondria. Here we show that resident mitochondrial gene products are shorter than their corresponding counterparts in -proteobacteria and, furthermore, that the reduction of mitochondrial genome size is correlated with a reduction in the length of the corresponding resident gene products. We show that relative genomic AT content, which has been identified as a factor influencing gene lengths in other systems, cannot explain gene length/genome size covariance observed in mitochondria. Our data are therefore in agreement with the idea that gene length evolves as a consequence of selection for smaller genomes, either to avoid accumulation of deleterious mutations or triggered by selection for a replication advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号