共查询到20条相似文献,搜索用时 15 毫秒
1.
Sinikka Hanhimäki 《Oecologia》1989,81(2):242-248
Summary The effect of leaf damage simulating the feeding of early season insect herbivore species, e.g. Epirrita autumnata, to mountain birch, Betula pubescens ssp. tortuosa, on the performance of insect larvae was studied with eleven leaf-chewing sawfly species. I found variation in the results that was due to short- and long-term inducible responses and to the phenology of herbivore species. In general, early and mid-season species were more strongly affected by induced reactions than late-season species. This finding is in accordance with earlier results but I could show that the persistance of induced reactions rather than the influence of timing of damage is responsible for the result. The growth of the larvae of mid-season sawfly species was affected by both short- and long-term induced reactions. This result shows that early season species may escape short-term induced reactions of mountain birch in current year but may not avoid long-term effects. It is supposed that seasonal deterioration of leaf quality either masks the effects of induced defences or late-season species are better adapted to low-quality leaves. Some species show variation in their response to induced defence in different years. This may be due to yearly differences in induced reactions as well as to species-specific responses. Induced defence reactions may play a role in competitive interactions between herbivore species in leaf-chewing guild of mountain birch. 相似文献
2.
Effects of simulated winter browsing on mountain birch foliar chemistry and on the performance of insect herbivores 总被引:3,自引:0,他引:3
Winter browsing by mammalian herbivores is known to induce a variety of morphological and physiological changes in plants. Browsing has been suggested to decrease the carbohydrate reserves in woody plants, which might lead to reduced tannin production in leaves during the following summer, and consequently, to increased herbivore damage on leaves. We conducted a clipping experiment with mature mountain birch trees and measured the effects of clipping on birch growth, leaf chemistry and toughness, as well as on the performance of insect herbivores. Leaves grew larger and heavier per unit area in the clipped ramets and had a higher content of proteins than leaves in the control trees. Clipping treatment did not affect the total content of sugars in the leaves (mg g?1), suggesting that a moderate level of clipping did not significantly reduce the carbohydrate pools of fully‐grown mountain birch trees. Furthermore, the contents of proanthocyanidins (condensed tannins) and gallotannins were slightly higher in the leaves of clipped ramets, contrary to the hypothesis of reduced tannin production. The effects of clipping treatment on leaf and shoot growth and on foliar chemistry were mainly restricted to the clipped ramets, without spreading to untreated ramets within the same tree individual. The effects of clipping on leaf characters varied during the growing season; for instance, leaf toughness in clipped ramets was higher than toughness in control trees and ramets only when leaves were mature. Accordingly, clipping had inconsistent effects on insect herbivores feeding at different times of the growing season. The generally small impact of clipping on herbivore performance suggests that the low intensity of natural browsing at the study area, simulated by our clipping treatment, does not have strong consequences for the population dynamics of insect herbivores on mountain birch via enhanced population growth caused by browsing‐induced changes in food quality. 相似文献
3.
We explored Hamilton and Brown's autumn signalling hypothesis in mountain birch (Betula pubescens). As predicted by the hypothesis, early autumn colour change (i.e. high degree of autumn colouration in September) was negatively correlated with insect damage the following season. Furthermore, as expected, indices of physiological stress (i.e. leaf fluctuating asymmetry) and reproductive investment (i.e. catkin production) were positively correlated with insect damage the following season. Indirectly, we also found support for the idea that the proposed handicap signal (i.e. early autumn senescence) might be associated with an honesty ensuring cost in terms of lost primary production. Further work is, however, required to determine whether the link between autumn colours and insect damage observed in this study is causal. 相似文献
4.
Direct or plant-mediated interactions between herbivores may modify their spatial distribution among and within plants. In this study, we examined the effect of a leaf-chewing geometrid, the autumnal moth (Epirrita autumnata), on two different herbivore groups, leaf rolling Deporaus betulae weevils and Eriocrania spp. leafminers, both feeding on mountain birch (Betula pubescens ssp. czerepanovii). The exact locations of herbivores within tree canopies were mapped during three successive summers. In the first 2 years, some trees were artificially colonized by eggs of the autumnal moth to induce both rapid and delayed resistance in the foliage. The natural infection levels of the pathogenic rust fungus (Melampsoridium betulinum), potentially involved in species interactions, were also recorded. At the level of the whole tree, the density of D. betulae leaf rolls was lower in trees infested by the autumnal moth in the same year. However, the feeding locations within trees were partly segregated: D. betulae favoured shadier branches, while E. autumnata preferred the sunny parts of the canopy. The autumnal moth did not affect current- or following-year density of leafminers at the tree or branch level. Trees infected by rust had fewer leafminers in the same summer than noninfected trees. There were no interaction effects between defoliation by the autumnal moth and rust infection, and no delayed effects on the abundance of other herbivores the following year. Taken together, these findings suggest that the autumnal moth has a negative, partially plant-mediated impact on D. betulae, and can reduce the extent of current-year defoliation caused by D. betulae. This may be beneficial for the mountain birch, since the greater part of D. betulae damage occurs around or after the end of the larval period of the autumnal moth, which may be a critical time for tree recovery after moth outbreaks. 相似文献
5.
Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore 下载免费PDF全文
Mary A. Jamieson Ezra G. Schwartzberg Kenneth F. Raffa Peter B. Reich Richard L. Lindroth 《Global Change Biology》2015,21(7):2698-2710
Climate change and insect outbreaks are key factors contributing to regional and global patterns of increased tree mortality. While links between these environmental stressors have been established, our understanding of the mechanisms by which elevated temperature may affect tree–insect interactions is limited. Using a forest warming mesocosm, we investigated the influence of elevated temperature on phytochemistry, tree resistance traits, and insect performance. Specifically, we examined warming effects on forest tent caterpillar (Malacosoma disstria) and host trees aspen (Populus tremuloides) and birch (Betula papyrifera). Trees were grown under one of three temperature treatments (ambient, +1.7 °C, +3.4 °C) in a multiyear open‐air warming experiment. In the third and fourth years of warming (2011, 2012), we assessed foliar nutrients and defense chemistry. Elevated temperatures altered foliar nitrogen, carbohydrates, lignin, and condensed tannins, with differences in responses between species and years. In 2012, we performed bioassays using a common environment approach to evaluate plant‐mediated indirect warming effects on larval performance. Warming resulted in decreased food conversion efficiency and increased consumption, ultimately with minimal effect on larval development and biomass. These changes suggest that insects exhibited compensatory feeding due to reduced host quality. Within the context of observed phytochemical variation, primary metabolites were stronger predictors of insect performance than secondary metabolites. Between‐year differences in phytochemical shifts corresponded with substantially different weather conditions during these two years. By sampling across years within an ecologically realistic and environmentally open setting, our study demonstrates that plant and insect responses to warming can be temporally variable and context dependent. Results indicate that elevated temperatures can alter phytochemistry, tree resistance traits, and herbivore feeding, but that annual weather variability may modulate warming effects leading to uncertain consequences for plant–insect interactions with projected climate change. 相似文献
6.
The role of resources and natural enemies in determining the distribution of an insect herbivore population 总被引:3,自引:0,他引:3
1. Both resources and natural enemies can influence the distribution of a herbivore. The ideal free distribution predicts that herbivores distribute themselves to optimise utilisation of resources. There is also evidence of herbivores seeking out refuges that reduce natural enemy attack (enemy‐free space). Which of these theories predominates in a thistle–tephritid Terellia ruficauda (Diptera: Tephritidae)–parasitoid interaction is examined. 2. The plant, Cirsium palustre, had a contagious distribution approximated by the negative binomial distribution. Terellia ruficauda foraged preferentially and oviposited on isolated plants although its larvae gained neither nutritional benefit nor reduced natural enemy pressure from such behaviour. 3. Parasitoids of T. ruficauda foraged and oviposited more frequently on isolated than on crowded T. ruficauda, resulting in inverse density‐dependent parasitoid attack at all spatial scales examined. Neither the herbivore nor natural enemies distributed themselves according to the predictions of the ideal free distribution and the herbivore did not oviposit to reduce natural enemy attack. 4. Extrapolating from the theoretical predictions of the ideal free distribution and enemy‐free space to the field requires considerable caution. Terellia ruficauda and its parasitoids appear to select their oviposition sites to spread the risk of losses through factors (e.g. mammal herbivory) that may damage dense clusters of C. palustre. 相似文献
7.
Ossipov V Haukioja E Ossipova S Hanhimäki S Pihlaja K 《Biochemical Systematics and Ecology》2001,29(3):223-240
We investigated the role of phenolic and phenolic-related traits of the leaves of mountain birch (Betula pubescens ssp. czerepanovii) as determinants of their suitability for the growth of larvae of the geometrid Epirrita autumnata. As parameters of leaf suitability, we determined the contents of total phenolics, gallotannins, soluble and cell-wall-bound proanthocyanidins (PAS and PAB, respectively), lignin, protein precipitation capacity of tannins (PPC), and leaf toughness. In addition, we examined concentrations of soluble carbohydrates and protein-bound amino acids as background variables describing the nutritive value of leaves. The correlation of the leaf traits of our 40 study trees with the tree-specific relative growth rate (RGR) of E. autumnata showed that the only significant correlation with RGR was that of PAS - the largest fraction of total phenolics - and even that explained only 15% of the variation in E. autumnata growth. The nonlinear estimation of the relationship between RGR and PAS by piecewise linear regression divided the 40 study trees into two groups: (i) 19 trees with good leaves for E. autumnata (RGR ranging from 0.301 to 0.390), and (ii) 21 trees with poor leaves (RGR ranging from 0.196 to 0.296). The suitability of leaves within these two groups of trees was determined by different phenolic traits. Within the good group, the suitability of leaves for larvae was determined by the PPC of extracts, which strongly correlated with gallotannins, and by the total content of gallotannins. In contrast, the leaves of poor trees had significantly higher contents of both PAS and PAB, but leaf toughness correlated only negatively with the RGR of E. autumnata larvae. We also discuss the causes of variation in the phenolic and phenolic-related factors that determine the suitability of leaves for E. autumnata larvae in different groups of trees. 相似文献
8.
Pekka Kaitaniemi Kai Ruohomki 《Perspectives in Plant Ecology, Evolution and Systematics》2003,5(4):231-249
We present a comprehensive analysis of factors affecting resource allocation and crown formation in a subarctic birch tree, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti. Using biomass measurements and digitized data on tree architecture, we investigated several hypotheses on various factors that may modify plant growth. We also analyzed the extent to which different mechanisms operate at different scales, ranging from individual shoots to the whole branches or trees. Different factors affected allocation at different levels of organization. Stem age had a minor effect, suggesting that similar control mechanisms operate at all stages of development. Fates of individual shoots were affected by their local growing conditions as indicated, for example, by the dependence of long shoot production on light. Buds formed in the current long shoots were likely to become new long shoots. In the innermost crown parts, radial growth had priority compared to long shoot production. Elongation of individual long shoots was controlled by two conflicting factors. Long distance from the roots suppressed growth, probably indicating costs associated with resource transportation, whereas a high level of light augmented growth. In contrast, growth of entire branches was not so clearly related to the availability of resources, but showed limitation due to allometric scaling. This set a relationship between the maximum long shoot number and the overall branch size, and may indicate allometric constraints to the way a tree is constructed. Strict allometric relationships existed also between other structural traits of mountain birch, most of them similar at all levels of branching hierarchy. However, despite the upper level restrictions set by allometry, source-sink interactions and localized responses of individual shoots operated as local processes that directed allocation towards the most favourable positions. This may be a mechanism for achieving efficient tree architecture in terms of resource intake and costs of transportation. 相似文献
9.
Wound-induced oxidative responses in mountain birch leaves 总被引:5,自引:0,他引:5
AIMS: The aim of the study was to examine oxidative responses in subarctic mountain birch, Betula pubescens subsp. czerepanovii, induced by herbivory and manual wounding. METHODS: Herbivory-induced changes in polyphenoloxidase, peroxidase and catalase activities in birch leaves were determined. A cytochemical dye, 3,3-diaminobenzidine, was used for the in situ and in vivo detection of H2O2 accumulation as a response to herbivory and wounding. To localize peroxidase activity in leaves, 10 mm H2O2 was applied to the dye reagent. KEY RESULTS: Feeding by autumnal moth, Epirrita autumnata, larvae caused an induction in polyphenoloxidase and peroxidase activities within 24 h, and a concomitant decrease in the activity of antioxidative catalases in wounded leaves. Wounding also induced H2O2 accumulation, which may have both direct and indirect defensive properties against herbivores. Wound sites and guard cells showed a high level of peroxidase activity, which may efficiently restrict invasion by micro-organisms. CONCLUSION: Birch oxidases together with their substrates may form an important front line in defence against herbivores and pathogens. 相似文献
10.
D. J. McFarlane E. A. B. Aitken A. W. Ridley G. H. Walter 《Journal of Applied Entomology》2021,145(1-2):158-169
The ecology of Tribolium castaneum (Herbst) outside of grain storage facilities is poorly known. However, high densities of T. castaneum adults are known to infest stored cotton seeds (Gossypium hirsutum (L.)) in Queensland, Australia, despite the absence of stored food products in the immediate vicinity. Previous studies suggest that the beetles are attracted to the fungal colonies growing on the residual fibres that remain on the cotton seeds after ginning, but the specifics of this remain unclear, even as to the species of fungi involved. In the current study, 14 fungal species were isolated from stored cotton seeds collected from four sites in Queensland. The feeding preferences of the adult beetles and the developmental success of the larvae were recorded for each fungal species. Gut analyses of T. castaneum adults, after exposure in no-choice feeding tests, showed that the beetles will feed on any one of the 14 fungal species when exposed (over 14 days) to cotton seeds that had been inoculated with one particular fungal species. The developmental success of the larvae varied depending on the fungal species, with most fungal species supporting only low levels of successful development (<30%). Tests with each fungal species and the volatiles they release revealed that neither adult nor larval survival was significantly affected by the presence of any particular fungal isolate. These results indicate that T. castaneum will feed on a variety of fungal species but that none of the tested fungal species on its own provides a good larval diet for T. castaneum. 相似文献
11.
The ability of a herbivore to tolerate plant defensive chemicals may vary with the herbivore’s energetic state. We investigated
the effect of body condition on the survivorship of individual mountain pine beetles, Dendroctonus ponderosae, exposed to host monoterpenes at concentrations comparable to constitutive and induced levels of defence using fumigant exposure.
Body condition index was calculated as the residual mass after fitting the relationship between fresh weight and body size.
Differences in survivorship among the four monoterpenes tested (α-pinene, myrcene, terpinolene and limonene) were small. Beetles
with a higher body condition index survived high monoterpene concentrations better than those in poorer condition. There was
no direct effect of sex, but positive effects of body size and fat content on survivorship favoured females, the sex that
pioneers attacks on live trees. Higher body condition index corresponded to both higher fat content and fat-free body mass;
the same conclusions about monoterpene identity and size-dependent or energy-dependent tolerance of high monoterpene concentrations
held if fat or fat-free body mass were used in place of body condition index. This study highlights the need to consider insect
body condition in understanding insect–plant interactions. 相似文献
12.
Advantages of a mixed diet: feeding on several foliar age classes increases the performance of a specialist insect herbivore 总被引:5,自引:0,他引:5
Two field studies were carried out to determine the influence of Abies balsamea foliage age on the preference and performance of larvae of Neodiprion abietis, a specialist Diprionid sawfly. Preference was determined by examining N. abietis defoliation on all age classes of foliage. Performance was estimated using larval survival, cocoon weights and the percentage of adults that were females. Neodiprion abietis preference for, and performance on, current-year foliage was very low, peaked on 2 or 3-year-old foliage, and declined on older foliage. Thus, sawfly feeding preference was adaptive. However, survival and cocoon weight were highest when sawflies were allowed to feed on all age classes of foliage, demonstrating that an insect specialist may perform better when feeding on several age classes of foliage from a single host plant species. These results indicate that either different larval instars have different nutritional requirements, or that food mixing provides the best diet, permitting the herbivore to obtain needed nutrients while avoiding ingestion of toxic doses of secondary metabolites. In addition, our results suggest that limited availability of varied foliage has more negative consequences for N. abietis females than for males, as the percentage of survivors that were females decreased when juvenile mortality was high. Our results emphasize the importance of considering non-linear changes in foliar quality as leaves age on herbivore preference and performance, and demonstrate how a herbivore can use this variability to maximize its fitness. 相似文献
13.
Erkki Haukioja 《Ecography》1979,2(4):272-274
Birch forest on the slope of the Jesnalvaara fell forms a gradient ranging from 7–8 m high trees (at 75 m a.s.l.) to birch shrubs less than 1 m high at the top of the fell (330 m a.s.l.). Upper parts of the forest (above 220 m) were defoliated by Oporinia autumnata (Lep., Geometridae) about ten years ago and, with the exception of the top, only a fraction of birches have recovered. Climatic conditions explain the limitation of the damaged area – Oporinia eggs were killed during cold winters. Predators may also limit the damage. Defensive mechanisms in the birch leaves – especially a low nitrogen content and high concentrations of phenols inhibiting trypsin – can slow down an increase in herbivore density by reducing their reproductive capacity. Birch leaves from the lower limit of the damaged area are least suitable for the growth of herbivores. They have the highest concentration of phenols, too. Birches at the foot of Jesnalvaara are able to increase leaf phenols after mechanical damage of nearby leaves. This is enough to retard the growth of several herbivore species. Ability to recover after defoliation is an important part of the anti-herbivore strategy of the birch. This ability is higher in shrub birches than in tall trees and better after a warm than a cold summer. Birch leaves in the year following defoliation are less usable for herbivores and cause increased mortality and lowered reproduction. These properties are the weakest in birches at the foot of Jesnalvaara where the probability of being defoliated is also lowest. 相似文献
14.
The role of low-level ozone exposure and mycorrhizas in chemical quality and insect herbivore performance on Scots pine seedlings 总被引:2,自引:0,他引:2
Anne-Marja Manninen Toini Holopainen Päivi Lyytikäinen-Saarenmaa† Jarmo K. Holopainen ‡ 《Global Change Biology》2000,6(1):111-121
The effects of low‐level ozone exposure and suppression of natural mycorrhizas on the above‐ground chemical quality of Scots pine (Pinus sylvestris L.) needles and insect herbivore performance were studied in a two‐year field experiment. Seedlings were fumigated with the ozone doses 1.5–1.7 times the ambient, and natural mycorrhizal infection level was about 35% reduced in roots with fungicide propiconazole. On ozone‐exposed seedlings the mean relative growth rate (MRGR) of Lygus rugulipennis Popp. nymphs was lower than on ambient ozone seedlings, but Gilpinia pallida Klug sawfly larvae grew better on elevated ozone seedlings than on ambient ozone seedlings. MRGR of Schizolachnus pineti Fabr. and Cinara pinea L. aphid nymphs or Neodiprion sertifer Geoffr. sawfly larvae or the oviposition of L. rugulipennis and N. sertifer were not affected by ozone exposure. Although ozone exposure did not affect total phenolics, total terpene, total or individual resin acid, total free amino acid, nutrient or sugar concentrations in needles, MRGR of L. rugulipennis positively correlated with total terpenes and MRGR of G. pallida positively with total amino acids. In addition, ozone exposure increased serine and proline concentration and marginally also starch concentration in needles. When mycorrhizas were reduced with fungicide, only MRGR of L. rugulipennis nymphs increased, but performance of other insect herbivores studied was not changed. However, number of L. rugulipennis eggs correlated positively with mycorrhizal infection level and also with total sugars. Reduction of mycorrhizas did not strongly affect the concentrations of analysed compounds in needles, because only phosphorus and potassium and some individual resin acids were reduced by fungicide treatment. These results suggest that low‐level ozone exposure and moderately declined mycorrhizal infection do not drastically affect either the above‐ground chemical quality of Scots pine seedlings or performance of studied insect herbivores. 相似文献
15.
16.
Jerome Keaton Wilson Laura Ruiz Jesse Duarte Goggy Davidowitz 《Ecology and evolution》2019,9(23):13104-13113
17.
The extrafloral nectaries of many plants promote ant defense against insect herbivores. We examined the influence of extrafloral nectaries on the levels of parasitism of a generalist insect herbivore, the gypsy moth (Lymantria dispar L.). Larvae and pupae of the moth were collected from trees with and without extrafloral nectaries growing in the same forests in South Korea and reared to evaluate parasitism. More parasitism occurred on plants with extrafloral nectaries in seven of the nine season-long collections at the six sites and in four out of five collecting periods. Parasitism was higher on the four main genera of plants with extrafloral nectaries than on any of five main genera of plants without extrafloral nectaries. There was no difference in parasitoid richness; nine species occurred in each group, eight of which were the same. There was a positive and almost significant correlation between the abundance of plants with extrafloral nectaries and the parasitism of gypsy moth at the sites. Extrafloral nectaries may reduce herbivory by inducing more parasitism of the insect herbivores that attack plants bearing the glands. 相似文献
18.
Oddvar Skre Kari Taulavuori Erja Taulavuori Jarle Nilsen Bernt Igeland Kari Laine 《Environmental and Experimental Botany》2008,62(3):254-266
Seedlings of five mountain birch populations (Betula pubescens Ehrh. ssp. czerepanovii) from Fennoscandia and Iceland were raised and grown at natural daylengths at Tromsø, Norway (69°N) and different temperatures during late summer and fall season, followed by winter temperature treatment at ambient and +4 °C above ambient temperatures at Bergen, Norway (60°N). The experiment took place during two seasons (2000/01 and 2001/02). The following summer shoot and biomass growth were reduced as a result of winter warming and subsequent premature dehardening in early flushing provenances and treatments. Biomass increased in plants grown at low hardening temperature when compared with high temperature treatment. As a conclusion, increased winter temperatures would tend to increase the risk of spring frost damage and reduce growth in birch seedlings, because the differences between the frost hardening and ambient temperatures are decreasing, and because the time from budbreak to dehardening is shortened. The results are discussed in relation to simultaneous experiments with frost hardiness in the same populations and treatments. 相似文献
19.
Plant polyploidy and host expansion in an insect herbivore 总被引:2,自引:0,他引:2
Polyploidization has played an essential role in the diversification of seed plants and often has profound effects on plant physiology and morphology. Yet, little is known about how plant polyploidization has shaped the ecology and evolution of interactions between phytophagous insects and their hosts. Polyploidization could either facilitate or impede colonization of new hosts. Greya politella (Lepidoptera: Prodoxidae) is highly specialized on plants in the genus Lithophragma (Saxifragaceae) throughout most of its geographic range. In central Idaho, some populations have shifted to the related Heuchera grossulariifolia, a plant that has repeatedly undergone autopolyploidization. Previous studies have shown that populations feeding natively on H. grossulariifolia prefer tetraploids to diploids in naturally mixed stands. We investigated whether this difference is caused by an inherent preference for tetraploids, or if the preference in present Heuchera-feeding populations has evolved over time. Moths from a strictly Lithophragma-feeding population were tested for preference of diploid or tetraploid H. grossulariifolia, using a combination of field experiments and caged choice trials. In all trials, attack rates on these non-hosts were very low, with no significant difference between ploidies. In addition, there was little evidence that females manipulated their clutch sizes when ovipositing into different plant species or ploidy levels. Hence, the local shift from Lithophragma to Heuchera in central Idaho is not due to failure of the moths to discriminate between these plant species. Furthermore, the higher attack rates on tetraploids in native H. grossulariifolia-feeding populations cannot be caused by a higher initial preference for these plants, but must instead be a result of differences in plant phenology and/or selection acting on local populations. 相似文献
20.
A multiscale approach has lead to significant advances in the understanding of species population dynamics. The scale-dependent
nature of population processes has been particularly clearly illustrated for insect herbivores. However, one of the most well-studied
insect herbivores, the galling sawfly Euura lasiolepis, has to date been examined almost exclusively at fine spatial scales. The preference-performance, plant vigour and larval
survival hypotheses are well supported by this species. Here, we test these hypotheses at a spatial scale larger than that
previously considered, i.e. across a landscape in northern Arizona represented by an altitudinal gradient encompassing a series
of drainages. We also develop a qualitative model for understanding the population dynamics of E. lasiolepis based on patterns of survival and mortality found in this study and previous ones. Gall density was highly variable across
the altitudinal gradient, not explained by host plant variables, and thus a poor surrogate fot population abundance. These
findings for the first time fail to support the plant vigour and preference hierarchy hypotheses for E. lasiolepis. Dispersal limitation most likely explains the lack of support for these hypotheses at this scale. By contrast, sawfly survival,
gall abortion, parasitism and larval mortality were well explained by host plant quality variables and altitude. The larval
survival hypothesis was well supported and is thus comparatively scale-invariant. A qualitative model developed here highlighted
the importance of both willow water status and disturbance in determining host plant quality, as well as an apparent trade
off between shoot length and plant moisture status in determining vital rates across the altitudinal gradient. This study
thus demonstrated for the first time the scale-dependent nature of mechanisms underlying the population dynamics E. lasiolepis, and identified the interaction between parasitism and altitude as a novel mechanism underlying spatial patterns in the survival
and mortality patterns of this species. 相似文献