共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenicity studies on ketone solvents: methyl ethyl ketone, methyl isobutyl ketone, and isophorone 总被引:2,自引:0,他引:2
J L O'Donoghue S R Haworth R D Curren P E Kirby T Lawlor E J Moran R D Phillips D L Putnam A M Rogers-Back R S Slesinski 《Mutation research》1988,206(2):149-161
3 ketone solvents (methyl ethyl ketone (MEK), methyl isobutyl ketone (MiBK), and isophorone) were tested for potential genotoxicity. The assays of MEK and MiBK included the Salmonella/microsome (Ames) assay, L5178Y/TK+/- mouse lymphoma (ML) assay, BALB/3T3 cell transformation (CT) assay, unscheduled DNA synthesis (UDS) assay, and micronucleus (MN) assay. Only the ML, UDS, and MN assays were conducted on samples of isophorone. No genotoxicity was found for MEK or isophorone. The presence of a marginal response only at the highest, cytotoxic concentration tested in the ML assay, the lack of reproducibility in the CT assay, and clearly negative results in the Ames assay, UDS and MN assays, suggest that MiBK is unlikely to be genotoxic in mammalian systems. 相似文献
2.
Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis 总被引:4,自引:0,他引:4
Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction-amplified genes coding for 16S rRNA was used to assess differences in bacterial community structure as a function of spatial location along the height of two biofilters used to treat a model waste gas stream containing methyl ethyl ketone (MEK). One of the laboratory-scale biofilters was operated as a conventional continuous-flow biofilter (CFB) and the other was operated as a sequencing batch biofilter (SBB). Both biofilters, inoculated with an identical starting culture and operated over a period lasting more than 300 days, received the same influent MEK concentration and same mass of MEK on a daily basis. The systems differed, however, in terms of the fraction of time during which contaminated air was supplied and the overall operating strategy employed. DGGE analysis indicated that microbial community structures differed as a function of height in each of the biofilters. The DGGE banding patterns also differed between the two biofilters, suggesting that operating strategies imposed on the biofilters imparted a sufficiently large selective pressure to influence microbial community structures. This may explain, in part, the superior performance of the SBB over the CFB during model transient loading conditions, and it may open new possibilities for purposely manipulating the microbial populations in biofilters treating gas-phase contaminants in a manner that leads to more favorable treatment performance.Electronic Supplementary Material Supplementary material is available in the online version of this article at 相似文献
3.
Biodegradations of methyl ethyl ketone and methyl isobutyl ketone were performed in intermittent biotrickling filter beds
(ITBF) operated at two different trickling periods: 12 h/day (ITBF-12) and 30 min/day (ITBF-0.5). Ralstonia sp. MG1 was able to degrade both ketones as evidenced by growth kinetic experiments. Results show that trickling period is an
important parameter to achieve high removal performance and to maintain the robustness of Ralstonia sp. MG1. Overall, ITBF-12 outperformed ITBF-0.5 regardless of the target compound. ITBF-12 had high performance recovery at various
inlet gas concentrations. The higher carbon dioxide production rates in ITBF-12 suggest higher microbial activity than in
ITBF-0.5. Additionally, lower concentrations of absorbed volatile organic compound (VOC) in trickling solutions of ITBF-12
systems also indicate VOC removal through biodegradation. Pressure drop levels in ITBF-12 were relatively higher than in ITBF-0.5
systems, which can be attributed to the decrease in packed bed porosity as Ralstonia sp. MG1 grew well in ITBF-12. Nonetheless, the obtained pressure drop levels did not have any adverse effect on the performance
of ITBF-12. Biokinetic constants were also obtained which indicated that ITBF-12 performed better than ITBF-0.5 and other
conventional biotrickling filter systems. 相似文献
4.
Claudia Guerrero-Barajas Claudio Garibay-OrijelLiliana E. Rosas-Rocha 《International biodeterioration & biodegradation》2011,65(1):116-123
Sulfate reduction (SR) and trichloroethylene (TCE) biodegradation at two different temperatures (37 and 70 °C) were investigated in enrichment cultures prepared with two different samples of sediments collected from hydrothermal vents. The unadapted sediments were incubated with sulfate (4 g L−1) as the electron acceptor before TCE addition to enrich them in biomass and to establish a constant sulfate reduction (SR, 87% sulfate conversion and specific H2S concentration of 90.81 ± 8.19 mg H2S g VSS−1), afterwards TCE was added at an initial concentration of 300 ??mol L−1. The best results for TCE biodegradation were obtained at 37 °C. At this temperature, SR was up to 92%, whereas TCE biodegradation reached 75% and ethane was detected as the main degradation product. Under thermophilic conditions (70 °C) TCE biodegradation reached up to approximately 60% and the SR was 30% in 30 days of incubation with the chlorinated solvent. Along with these results, the 16S rDNA analysis from samples at 37 °C showed the presence of bacteria belonging to the genera: Clostridium, Bacillus and Desulfuromonas. The overall results on TCE degradation and SR suggest that cometabolic TCE degradation is carried out by sulfate or sulfur reducers and fermentative bacteria at mesophilic conditions. 相似文献
5.
Microenvironments and microbial community structure in sediments 总被引:3,自引:0,他引:3
The aim of this study was to explore the potential of a combined chemical and microbiological approach as part of a study of organic carbon oxidation processes in sediments. An assessment of microbiological diversity using molecular techniques was carried out in combination with high resolution chemical measurements at the sediment-water interface of a coastal lagoon affected by eutrophication in autumn 2000. There was a 0.2 mm overlap between the O2 and H2S profiles. pH showed a maximum just above the sediment-water interface coinciding with an oxygen maximum, suggesting photosynthetic activity, and a minimum coinciding with the O2-H2S interface. The redox potential was high in bottom water and surface sediment, reflecting the presence of oxygen and oxides, and reached low values after a step-wise decrease at -18 mm. Reduction of Fe occurred within the biofilm at the O2-H2S interface and was mostly due to reduction by H2S. The elevated concentrations of dissolved Mn in the oxic water may have been caused either by in situ production within organic aggregates or lateral water flow from sites nearby at which Mn2+ diffuses out of the sediment. Sequences related to sulphur chemolitotrophs were retrieved from the biofilm samples, which is consistent with the small overlap between O2 and H2S observed in this biofilm. Although the resolution of techniques used was different, sequencing results were consistent with chemical data in delineating the same horizons according to redox, pH or ecological properties. 相似文献
6.
A solid acid catalyst consisted of sulfonic groups covalently bound to an inorganic matrice was developed to dehydrate 2,3-butanediol into methyl ethyl ketone. Rate constant and apparent activation energy of the dehydration reaction were determined. The decay course of the catalyst was a two-stage curve. The catalyst was deactivated more rapidly in the first stage than in the second stage. The strategy of maintaining constant degree of dehydration was employed to lengthen the lifetime of catalyst. Treatment of the 2,3-butanediol containing fermentation broth with activated carbon greatly facilitated the subsequent dehydration reaction. 相似文献
7.
The removal of toxic methyl ethyl ketone (MEK) is studied in a lab scale biofilter packed with mixture of coal and matured compost. The biofiltration operation is divided into 5 phases for a period of 60 days followed by shock loading conditions for three weeks. The maximum removal efficiency of 95% is achieved during phase II for an inlet concentration of 0.59 g m−3, and 82–91% for the inlet concentration in the range of 0.45–1.23 g m−3 of MEK during shock loads. The Michaelis–Menten kinetic constants obtained are 0.086 g m−3 h−1 and 0.577 g m−3. The obtained experimental results are validated using Ottengraf–van den Oever model for zero-order diffusion-controlled region to understand the mechanism of biofiltration. The critical inlet concentration of MEK, critical inlet load of MEK and biofilm thickness are estimated using the results obtained from model predictions. 相似文献
8.
Bik HM Sung W De Ley P Baldwin JG Sharma J Rocha-Olivares A Thomas WK 《Molecular ecology》2012,21(5):1048-1059
Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and probably play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world's largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment, key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For Operationally Clustered Taxonomic Units (OCTUs) reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic data sets. 相似文献
9.
Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer 总被引:21,自引:0,他引:21
Röling WF van Breukelen BM Braster M Lin B van Verseveld HW 《Applied and environmental microbiology》2001,67(10):4619-4629
Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria and Archaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the beta subclass of the class Proteobacteria (beta-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of delta-proteobacteria strongly increased and beta-proteobacteria reappeared. The beta-proteobacteria (Acidovorax, Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the family Geobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria are Geobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration. 相似文献
10.
Bacterial numbers and activities (as estimated by glucose uptake and total thymidine incorporation) were investigated at two sites in Long Island, New York aquifer sediments. In general, bacterial activities were higher in shallow (1.5–4.5 m below the water table or BWT), oxic sediments than in deep (10–18 m BWT), anoxic sediments. The average total glucose uptake rates were 0.18 ± 0.10 ng gdw–1 h–1 in shallow sediments and 0.09 ± 0.11 ng gdw–1 h–1 in deep sediments; total thymidine incorporation rates were 0.10 ± 0.13 pmol gdw–1 h–1 and 0.03 ± 0.03 pmol gdw–1 h–1 in shallow and deep sediments, respectively. Incorporation of glucose was highly efficient, as only about 10% of added label was recovered as CO2. Bacterial abundance (estimated from acridine orange direct counts) was 2.5 ± 2.0 × 107 cells gdw–1 and 2.0 ± 1.3 × 107 cells gdw–1 in shallow and deep sediments, respectively. These bacterial activity and abundance estimates are similar to values found in other aquifer environments, but are 10- to 1000-fold lower than values in soil or surface sediment of marine and estuarine systems. In general, cell specific microbial activities were lower in sites from Connetquot Park, a relatively pristine site, when compared to activities found in sites from Jamesport, which has had a history of aldicarb (a pesticide) contamination. To our knowledge, this is the first report of bacterial activity measurements in the shallow, sandy aquifers of Long Island, New York.Correspondence to: D.G. Capone 相似文献
11.
Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. 总被引:2,自引:7,他引:2
下载免费PDF全文

The ability of subsurface microbial communities to adapt to the biodegradation of xenobiotic compounds was examined in aquifer solids samples from a pristine aquifer. An increase in the rates of mineralization of radiolabeled substrates with exposure was used as an indication of adaptation. For some compounds, such as chlorobenzene and 1,2,4-trichlorobenzene, slight mineralization was observed but no adaptation was apparent during incubations of over 8 months. Other compounds demonstrated three patterns of response. For m-cresol, m-aminophenol, and aniline intermediate rates of biodegradation and a linear increase in the percent mineralized with time were observed. Phenol, p-chlorophenol, and ethylene dibromide were rapidly metabolized initially, with a nonlinear increase in the percent mineralized with time, indicating that the community was already adapted to the biodegradation of these compounds. Only p-nitrophenol demonstrated a typical adaptation response. In different samples of soil from the same layer in the aquifer, the adaptation period to p-nitrophenol varied from a few days to as long as 6 weeks. In most cases the concentration of xenobiotic added, over the range from a few nanograms to micrograms per gram, made no difference in the response. Most-probable-number counts demonstrated that adaptation is accompanied by an increase in specific degrader numbers. This study has shown that diverse patterns of response occur in the subsurface microbial community. 相似文献
12.
Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems 总被引:1,自引:0,他引:1
D Li JO Sharp PE Saikaly S Ali M Alidina MS Alarawi S Keller C Hoppe-Jones JE Drewes 《Applied and environmental microbiology》2012,78(19):6819-6828
This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones. 相似文献
13.
Van Nostrand JD Wu L Wu WM Huang Z Gentry TJ Deng Y Carley J Carroll S He Z Gu B Luo J Criddle CS Watson DB Jardine PM Marsh TL Tiedje JM Hazen TC Zhou J 《Applied and environmental microbiology》2011,77(11):3860-3869
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. 相似文献
14.
Allen JP Atekwana EA Atekwana EA Duris JW Werkema DD Rossbach S 《Applied and environmental microbiology》2007,73(9):2860-2870
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. 相似文献
15.
PG Medihala JR Lawrence GD Swerhone DR Korber 《Canadian journal of microbiology》2012,58(9):1135-1151
Relatively little is known regarding the spatial variability of microbial communities in aquifers where well fouling is an issue. In this study 2 water wells were installed in an alluvial aquifer located adjacent to the North Saskatchewan River and an associated piezometer network developed to facilitate the study of microbial community structure, richness, and diversity. Carbon utilization data analysis revealed reduced microbial activity in waters collected close to the wells. Functional PCR and quantitative PCR analysis indicated spatial variability in the potential for iron-, sulphate-, and nitrate-reducing activity at all locations in the aquifer. Denaturing gradient gel electrophoresis analysis of aquifer water samples using principal components analyses indicated that the microbial community composition was spatially variable, and denaturing gradient gel electrophoresis sequence analysis revealed that bacteria belonging to the genera Acidovorax , Rhodobacter , and Sulfuricurvum were common throughout the aquifer. Shannon's richness (H') and Pielou's evenness (J') indices revealed a varied microbial diversity (H' = 1.488-2.274) and an even distribution of microbial communities within the aquifer (J' = 0.811-0.917). Overall, these analyses revealed that the aquifer's microbial community varied spatially in terms of composition, richness, and metabolic activity. Such information may facilitate the diagnosis, prevention, and management of fouling. 相似文献
16.
Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites. 总被引:3,自引:0,他引:3
S R Kane H R Beller T C Legler C J Koester H C Pinkart R U Halden A M Happel 《Applied and environmental microbiology》2001,67(12):5824-5829
The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential. 相似文献
17.
A diploid yeast strain D61.M was used to study induction of mitotic chromosomal malsegregation, mitotic recombination and point mutation. Several ketones (including acetone and methyl ethyl ketone) and some organic acid esters (including the methyl, ethyl and 2-methoxyethyl esters of acetic acid) and acetonitrile strongly induced aneuploidy but not recombination or point mutation. Only diethyl ketone induced low levels of recombination and point mutation in addition to aneuploidy. Related compounds were weak inducers of aneuploidy: methyl n-propyl ketone, the methyl esters of propionic and butyric acid, acetic acid esters of n- and iso-propanol and ethyl propionate. No mutagenicity was found with n-butyl and isoamyl acetate, ethyl formate, acetyl acetone (2,5-dipentanone) and dioxane. Methyl isopropyl ketone induced only some recombination and point mutation but no aneuploidy. Efficient induction was only observed with a treatment protocol in which growing cells were exposed to the chemicals during a growth period of 4 h at 28 degrees C followed by incubation in ice for more than 90 min, usually overnight for 16-17 h. Aneuploid cells could be detected in such cultures during a subsequent incubation at growth temperature if the chemical was still present. Detailed analysis showed that there was a high incidence of multiple events of chromosomal malsegregation. It is proposed that the mutagenic agents act directly on tubulin during growth so that labile microtubules are formed which dissociate in the cold. When cells are brought back to temperatures above the level critical for reassembly of tubulin and allowed to grow, faulty microtubules are formed. 相似文献
18.
Molecular community analysis of microbial diversity 总被引:11,自引:0,他引:11
Dahllöf I 《Current opinion in biotechnology》2002,13(3):213-217
New technologies that avoid the need for either gene amplification (e.g. microarrays) or nucleic acid extraction (e.g. in situ PCR) have recently been implemented in microbial ecology. Together with new approaches for culturing microorganisms and an increased understanding of the biases of molecular methods, these techniques form the most exciting advances in this field during the past year. 相似文献
19.
Illumina-based analysis of microbial community diversity 总被引:4,自引:0,他引:4
Microbes commonly exist in milieus of varying complexity and diversity. Although cultivation-based techniques have been unable to accurately capture the true diversity within microbial communities, these deficiencies have been overcome by applying molecular approaches that target the universally conserved 16S ribosomal RNA gene. The recent application of 454 pyrosequencing to simultaneously sequence thousands of 16S rDNA sequences (pyrotags) has revolutionized the characterization of complex microbial communities. To date, studies based on 454 pyrotags have dominated the field, but sequencing platforms that generate many more sequence reads at much lower costs have been developed. Here, we use the Illumina sequencing platform to design a strategy for 16S amplicon analysis (iTags), and assess its generality, practicality and potential complications. We fabricated and sequenced paired-end libraries of amplified hyper-variable 16S rDNA fragments from sets of samples that varied in their contents, ranging from a single bacterium to highly complex communities. We adopted an approach that allowed us to evaluate several potential sources of errors, including sequencing artifacts, amplification biases, non-corresponding paired-end reads and mistakes in taxonomic classification. By considering each source of error, we delineate ways to make biologically relevant and robust conclusions from the millions of sequencing reads that can be readily generated by this technology. 相似文献
20.
Microbial quinone compositions of sediment mud samples from five different lakes in Japan were studied by spectrochromatography and mass spectrometry. The total quinone content of these samples ranged from 1.97 to 18.0 nmol/g dry weight of sediment, of which a combined fraction of ubiquinones and menaquinones accounted for 42 to 74%. The remaining fraction (26 to 58%) consisted of the photosynthetic quinones, plastoquinones and phylloquinone. The sediment samples produced PQ-9 or Q-8 as the most abundant quinone type regardless of their geographic locations and depths. These results indicate that oxygenic phototrophic microorganisms and Q-8-containing proteobacteria constituted major parts of microbial populations in the lake sediment. In the surface water of the same sampling sites, plastoquinones and phylloquinone occurred in much higher proportions. These findings suggested that the high abundance of oxygenic phototrophs in the sediment muds resulted from their constant movement or sedimentation from the surface water. Numerical analyses of the quinone profiles showed that the microbial communities of the sediment were diverse and different in different lakes but similar to each other in the diversity of bioenergetic modes. Three physiological groups of microbes showing ubiquinone-mediated aerobic respiration, oxygenic photosynthesis, and menaquinone-associated respiration were suggested to inhabit the lake sediments in balance. 相似文献