首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of water deficit on photochemical parameters and activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were investigated in two olive cultivars differing in drought tolerance — ‘Chemlali’ and ‘Chetoui’. After 30 days without irrigation, leaf water potential fell to −5.5 MPa that was accompanied by a marked decrease in net photosynthesis in ‘Chetoui’ olive cultivar. Maximal efficiency of PSII photochemistry (Fv/Fm) decreased slightly in ‘Chemlali’ (28 %) and substantially in ‘Chétoui’ (47 %). Both cultivars showed a similar decline (about 25 %) in the photochemical quenching coefficient, but only the drought-sensitive olive cultivar exhibited an enhancement (31 %) of non-photochemical fluorescence quenching under water deficit conditions. The quantum yield of electron transport decreased in both olive cultivars. ‘Chemlali’ showed a higher protection against oxidative stress, as judged from the lower levels of the malondialdehyde production. Catalase activity was higher in ‘Chetoui’. Glutathione reductase activity was increased similarly in both olive cultivars under water stress. Ascorbate peroxidase activity was enhanced in ‘Chemlali’ under water stress, but was unaffected in ‘Chetoui’. While, superoxide dismutase activity was inhibited in both cultivars under water stress, but higher activity was detected in ‘Chemlali’. Thus, the ability to increase ascorbate peroxidase and a higher superoxide dismutase activity might be an important attribute linked to the drought tolerance in ‘Chemlali’ olive cultivar.  相似文献   

2.
‘Hass’ is the most popular avocado (Persea americana Mill.) cultivar in the world. It has been characterized as a crop requiring cross-pollination. However, the potential extent of self-pollination and the most effective pollen donors (best cross-pollinizing cultivars) have not been determined. In this study, 56 markers were screened against ‘Hass’ and nine commonly used pollinizing cultivars grown in southern California: ‘Bacon,’ ‘Ettinger,’ ‘Fuerte,’ ‘Harvest,’ ‘Lamb Hass,’ ‘Marvel,’ ‘Nobel,’ ‘Sir Prize,’ and ‘Zutano.’ Seventeen microsatellite, i.e., simple sequence repeat (SSR) markers, were found to be very promising for paternity analysis. Four highly informative SSR markers were selected to accurately and unequivocally identify pollen parents of ‘Hass’ fruit from an orchard interplanted with these pollinizing cultivars. From 2003 to 2006, 7,984 ‘Hass’ fruit were analyzed for their paternity. Overall, the pollen parents of 99.55% of the analyzed fruit could be unequivocally identified with a single multiplex polymerase chain reaction (PCR). Only 36 fruits (<0.45%) required a second PCR reaction to reach unequivocal identification of the pollen parents.  相似文献   

3.
Peroxidase activity of red raspberry canes was dependent on the cultivar and influenced the subsequent lignification. After inoculation with Didymella applanata, responsible for the spur blight cane disease, the activity of soluble cytoplasmic enzyme increased in the moderately resistant ‘Latham’ and susceptible ‘Malling Promise’, similarly for syringaldazine and guaiacol as hydrogen donors. Systemic induction found in ‘Latham’ was recognized as a symptom of defence mechanism responsible for fungal restriction. Locally enhanced peroxidase activity in the ‘M.Promise’ tissues was related to the local lignification and/or may be associated with the loss of cell integrity caused by pathogen penetration. Pathogen-induced changes of cell wall peroxidases were similar in both cultivars mentioned above. No influence of the infection was found in the high susceptible Zeva cultivar. Using native-PAGE analysis and horizontal starch electrophoresis of soluble fraction five constitutive acidic isoperoxidases were detected in ‘Latham’ and three in ‘M. Promise’. The infection process was accompanied by the appearance of two new anodic isoforms.  相似文献   

4.
During fruit development, the concentration of main polyphenols (flavonols, flavanols, dihydrochalcones, hydroxycinnamic acids, anthocyanins) and the activities of related enzymes (phenylalanine ammonia lyase, chalcone synthase/chalcone isomerase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, flavonol synthase, peroxidase) were monitored in apple (Malus domestica Borkh.). The seasonal survey was performed at five different sampling dates and included the healthy peel of the resistant cultivar ‘Florina’ and healthy peel, scab symptomatic spot and the tissue around the infected spot of the susceptible cultivar ‘Golden Delicious’. From all enzymes tested, chalcone synthase/chalcone isomerase had the highest activity in both cultivars, while phenylalanine ammonia lyase had the lowest. The healthy peels of the susceptible and the resistant cultivar did not show differences in the accumulation of the main polyphenol groups present in the apple skin. However, in the resistant cultivar ‘Florina’, an increase of polyphenol enzyme activities could be observed in late stages of fruit development, which seems to be related to the anthocyanin accumulation in ripe fruits. Significant differences in the polyphenol metabolism were observed in the three different tissues of the susceptible cultivar ‘Golden Delicious’. Increased concentrations of hydroxycinnamic acids, dihydrochalcones and flavan-3-ols were found in the scab symptomatic spots and surrounding tissues. Phenylalanine ammonia-lyase, dihydroflavonol 4-reductase, flavanone 3-hydroxylase and peroxidase showed higher activities in the scab symptomatic spot compared to other analysed tissues, whereas the activities of other enzymes remained unchanged. Highest induction of polyphenol accumulation after scab infection was observed in early developmental stages, whereas enzyme activities were increased in later stages.  相似文献   

5.
The contributions of cadmium (Cd) accumulation in cell walls, antioxidative enzymes and induction of phytochelatins (PCs) to Cd tolerance were investigated in two distinctive genotypes of black oat (Avena strigosa Schreb.). One cultivar of black oat ‘New oat’ accumulated Cd in the leaves at the highest concentration compared to another black oat cultivar ‘Soil saver’ and other major graminaceous crops. The shoot:root Cd ratio also demonstrated that ‘New oat’ was the high Cd-accumulating cultivar, whereas ‘Soil saver’ was the low Cd-accumulating cultivar. Varied levels of Cd exposure demonstrated the strong Cd tolerance of ‘New oat’. By contrast, low Cd-accumulating cultivar ‘Soil saver’ suffered Cd toxicity such as growth defects and increased lipid peroxidation, even though it accumulated less Cd in shoots than ‘New oat’. Higher activities of ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1. 15. 1. 1) were observed in the leaves of ‘New oat’ than in ‘Soil saver’. No advantage of ‘New oat’ in PCs induction was observed in comparison to Cd-sensitive cultivar ‘Soil saver’, although Cd exposure increased the concentration of total PCs in both cultivars. Higher and increased Cd accumulation in cell wall fraction was observed in shoots of ‘New oat’. On the other hand, in ‘Soil saver’, apoplasmic Cd accumulation showed saturation under higher Cd exposure. Overall, the present results suggest that cell wall Cd accumulation and antioxidative activities function in the tolerance against Cd stress possibly in combination with vacuolar Cd compartmentation.  相似文献   

6.
 Random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) methods have been used to verify the hybridogenic origin and to identify the parental species of some ornamental cultivars in the subgenus Melanocrommyum of the genus Allium. The cultivars had been selected from seed obtained after uncontrolled pollination in breeders’ fields. The combination of GISH analysis with RAPD markers is very suitable for testing the hybridogenic origin of plants and to ascertain the parental species of the hybrids in such cases. As suspected, A. macleanii and A. cristophii are the parental species of ‘Globemaster’. The parental species of cultivar ‘Globus’ are A. karataviense and A. stipitatum, and not A. cristophii and A. giganteum as has been assumed on morphological grounds. Cultivars ‘Lucy Ball’ and ‘Gladiator’ are of hybrid origin, though only one of the parental species, A. hollandicum, could be confirmed. The cultivars ‘Purple Sensation’, ‘Mount Everest’, ‘White Giant’, ‘Michael H. Hoog’ and ‘Mars’ are not hybrids since neither GISH nor RAPD suggest the presence of a second genome. ‘Purple Sensation’ belongs to A. hollandicum, ‘Mount Everest’, ‘White Giant’ and ‘Mars’ to A. stipitatum,‘Michael H. Hoog’ to A. rosenorum. Received: 3 July 1997 / Accepted: 9 October 1997  相似文献   

7.
This study analyzed genetic differences of 19 cultivars selected from somaclonal variants of Syngonium podophyllum Schott along with their parents as well as seven additional Syngonium species and six other aroids using amplified fragment length polymorphism (AFLP) markers generated by 12 primer sets. Among the 19 somaclonal cultivars, ‘Pink Allusion’ was selected from ‘White Butterfly’. Tissue culture of ‘Pink Allusion’ through organogenesis resulted in the development of 13 additional cultivars. Self-pollination of ‘Pink Allusion’ obtained a cultivar, ‘Regina Red Allusion’, and tissue culture propagation of ‘Regina Red Allusion’ led to the release of five other cultivars. The 12 primer sets generated a total of 1,583 scorable fragments from all accessions, of which 1,284 were polymorphic (81.9%). The percentages of polymorphic fragments within ‘White Butterfly’ and ‘Regina Red Allusion’ groups, however, were only 1.2% and 0.4%, respectively. Jaccard's similarity coefficients among somaclonal cultivars derived from ‘White Butterfly’ and ‘Regina Red Allusion’, on average, were 0.98 and 0.99, respectively. Seven out of the 15 cultivars from the ‘White Butterfly’ group and three out of six from the ‘Regina Red Allusion’ group were clearly distinguished by AFLP analysis as unique fragments were associated with respective cultivars. The unsuccessful attempt to distinguish the remaining eight cultivars from the ‘White Butterfly’ group and three from the ‘Regina Red Allusion’ group was not attributed to experimental errors or the number of primer sets used; rather it is hypothesized to be caused by DNA methylation and/or some rare mutations. This study also calls for increased genetic diversity of cultivated Syngonium as they are largely derived from somaclonal variants.  相似文献   

8.
In three year field experiments (2001 – 2003) the growth, yield and productivity of 8 flax cultivars were compared. Cultivars ‘AC Linora’, ‘Flanders’, ‘Linola™ 947’, ‘Norlin’ and ‘Omega’ were obtained from Canada, ‘Barbara’ and ‘Hungarian Gold’ from Hungary and ‘Opal’ from Poland. Apart from the estimation of the yield of aboveground parts dry matter and seed yield the determinations of the primary index value of growth analysis were done and on their basis the indices LAI, LAD, RGR, CGR and HI were calculated. The obtained yield results of the examined flax cultivars show significant genotypic — environmental relationships pertaining to the dynamics of dry matter accumulation and the amount of seed yield. Meteorological conditions in the successive years significantly influenced the particular phases of growth and development of cultivars and the factor which increased the amount of dry matter was the air temperature during the period of plant emergence — budding. During the vegetative season with a large amount of rainfall the average seed yield was about 40 % lower than compared with a year of average precipitation and a warm second part of the second period of flax vegetation. Among the analyzed cultivars a stable yield in all the years was characteristic for cultivars ‘Flanders’, ‘Barbara’ and ‘AC Linora’ (that cultivar, however, during a wet year yielded at a low level). The assimilation leaf surface of the linseed quickly increased during the period from budding to flowering and the accumulation of dry matter of the aboveground parts lasted up to the green maturity. In the successive years of the experiment there were observed significant (linear or logarithmic regressions) relationship between the yield of dry matter and the indices of growth analysis. The biggest values of the CGR indicator were observed for the period from budding to flowering. The maintaining of a high CGR value after plant flowering in the year with a favourable course of climatic parameters was beneficial for a better yield of all flax cultivars. The low values of the RGR index after flowering of cultivar ‘Hungarian Gold’ and ‘Opal’ strictly corresponded to their low yield of seed and straw biomass.  相似文献   

9.
Summary A reliable method to screen Anthurium for burrowing nematode resistance and tolerance in vitro was developed using 17 genetically distinct Anthurium cultivars. Based on nonparametric data analysis, tolerance and resistance were found to be independent traits to be evaluated separately. An effective parameter for tolerance evaluation was ranking of relative leaf retention, whereas an effective parameter for resistance evaluation was the ranking of nematode reproduction, log(Rf+1). A comparison of the ranking of leaf retention with ranking of nematode reproduction clustered the cultivar responses to burrowing nematode infection into four groups: intolerant and resistant, moderately tolerant but susceptible, intolerant and susceptible, and tolerant and susceptible. ‘Ozaki’ was identified as an intolerant reference, ‘Nitta’ as a susceptible reference. ‘Blushing Bride’ was the most tolerant cultivar among those screened, but it may not be an ideal tolerant reference due to its low vigor. Future screening for burrowing nematode-tolerant and-resistant cultivars in Anthurium should include ‘Ozaki’ and ‘Nitta’ as internal controls. Evaluation of resistance should be based on a resistance index obtained by log(Rf of hybrid tested +1) divided by log(Rf of ‘Nitta’ +1); tolerance should be based on ranking of relative leaf retention.  相似文献   

10.
Fire blight (Erwinia amylovora) causes serious damage to pome fruit orchards, and identification of germplasm with heritable disease resistance is therefore crucial. Two dominant SCAR (sequence characterised amplified region) marker alleles (AE10-375 and GE-8019), flanking a previously identified QTL (quantitative trait locus) for resistance to fire blight on ‘Fiesta’ linkage group 7 in apple cultivars related to ‘Cox’s Orange Pippin’, were screened on 205 apple cultivars. Both marker alleles were present in 22% of the cultivars, indicating presence of the QTL allele for tolerance, and both were lacking in 25%, indicating homozygosity for absence of the QTL tolerance allele. However, 33% had only the marker allele AE10-375, while 20% had only GE-8019, suggesting that some cultivars with the dominant alleles for both of the flanking markers can carry these on separate chromosomes and may lack the QTL allele for tolerance. In 2009 and 2010, terminal shoots of greenhouse-grown grafted trees of 21 cultivars (only 20 in 2010) were inoculated with Erwinia amylovora. ‘Idared’ (susceptible) and ‘Enterprise’ (tolerant) were included as controls. Disease severity for each cultivar was expressed as percentage of necrosis in relation to entire length of shoot, and the ranking of cultivars in 2009 and 2010 was compared with a Spearman rank correlation test, P < 0.01. A relationship between presence of both flanking marker alleles for tolerance and level of fire blight tolerance was confirmed with a Mann–Whitney U-test, P < 0.01 in 2009, and P < 0.05 in 2010. A PCO (principal coordinate) analysis based on band profiles obtained with 12 SSR (simple sequence repeat) loci produced three loose clusters, two of which contained known offspring of ‘Cox’s Orange Pippin’, and one with cultivars that were either unrelated or had an unknown origin. Cases where DNA markers did not predict level of fire blight damage as expected, were, however, as common among descendants of ‘Cox’s Orange Pippin’ as among apparently unrelated cultivars. Obviously the ‘Fiesta’ LG 7 QTL has some predictive value, both for known ‘Cox’ relatives and others, but more efficient markers would be desirable for marker-assisted selection.  相似文献   

11.
Summary Inflorencence stalks from greenhouse-grownGladiolus plants of the cultivars ‘Blue Isle’ and ‘Hunting Song’ cultured on a Murashige and Skoog basal salts medium supplemented with 53.6 μM 1-napthaleneacetic acid formed a compact, not friable type of callus that regenerated plantlets. Cormel slices and intact plantlets of three cultivars (‘Peter Pears’, ‘Rosa Supreme’, ‘Jenny Lee’) propagated through tissue culture formed a friable type of callus when cultured on Murashige and Skoog basal salts medium supplemented with 2,4-dichlorophenoxyacetic acid. This friable callus readily formed a cell suspension when the callus was placed in a liquid medium. Plants were regenerated from two-month-old suspension cell cultures of the commercial cultivar ‘Peter Pears’ after the suspension cells had been cultured on solid medium.  相似文献   

12.
Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) × SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars ‘Opata 85’ and ‘Synthetic W7984’, the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. ‘Opata’ had 130 specific spots while ‘Synthetic’ had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the ‘Opata’ and ‘Synthetic’ spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar ‘Opata 85’ as compared to 4 in the new hexaploid `Synthetic W7984’. In addition, ‘Opata’ and ‘Synthetic’ differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Changes in ascorbic acid content and antioxidant enzyme activities were investigated in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) leaves of ‘Wutacai’ and ‘Erqing’ exposed to excess copper (Cu). Cu treatment reduced the fresh weight of shoot and root by 57% and 46% in ‘Wutacai’, and 60 and 54% in ‘Erqing’, respectively. The accumulation of copper in leaves was higher in ‘Wutacai’ than that in ‘Erqing’. Compared to the control, ascorbic acid (AsA) contents were significantly decreased after copper treatment in both cultivars, while they were higher in ‘Wutacai’ than in ‘Erqing’, which may explain the higher copper-tolerance of ‘Wutacai’ with higher copper accumulation. The higher AsA contents of ‘Wutacai’ resulted from their lower activities of degrading enzymes, such as ascorbate oxydase (AAO) and ascorbate peroxidase (APX), as well as the increasing activity of dehydroascorbate reductase (DHAR) after copper treatment compared with ‘Erqing’. Copper stimulated superoxide dismutase (SOD) activity in both cultivars, but for catalase (CAT), there was little difference between both cultivars. Peroxidases (POD) activity was decreased after copper treatment in ‘Erqing’, while in ‘Wutacai’, it was significantly increased at 14 days, and POD activity was higher in ‘Wutacai’ than that in ‘Erqing’ at 21 and 28 days. Therefore, the induced increasing activity of POD in ‘Wutacai’ also played an important role in its copper tolerance.  相似文献   

14.
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm3 pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.  相似文献   

15.
During vegetative period 2004–2005 powdery mildew (Erysiphe graminis DC. f. sp. hordei Em. Marchal) field resistance of spring barley cultivars was investigated at the Lithuanian Institute of Agriculture. The spring barley genotypes tested were Lithuania-registered cultivars, cultivars from genetic resources collection, and the new cultivars used for initial breeding. In total, 23 resistance genes were present in the 84 cultivars studied. Among mono-genes only mlo and 1-B-53 showed very high resistance. Slight powdery mildew necroses (up to 3 scores) formed on cultivars possessing these genes. The maximal powdery mildew (PM) severity reached a score of 8.5 and the area under disease progress curve (AUDPC) a value of 1216.8. The cultivars ‘Primus’, ‘Astoria’, ‘Power’, ‘Harrington’ and ‘Scarlett’ were the most resistant among the non mlo cultivars. Severity of PM on ‘Primus’ reached a score of 3.5 (3.0 of PM necrosis) in average, the other cultivars were diseased from 4.5 (3.0) to 5.0 (2.0). The AUDPC values for these cultivars except ‘Scarlett’ were the lowest (85.0–145.3) among the other cultivars. The highest contrast in development of the other leaf diseases was between highly resistant and susceptible to PM cultivar groups. The fast development of PM depressed development of the other diseases 4.7 times.  相似文献   

16.
Isozyme electrophoresis was used as a method to provide a measure of relationship among Italia, Rubi, Benitaka, and Brasil cv of Vitis vinifera traditionally grown in Marialva, a town in the northwestern region of the state of Paraná, southern Brazil. No allelic variation was observed for esterase (EST), malate dehydrogenase (MDH), peroxidase (POD), glutamate dehydrogenase (GTDH), alkaline phosphatase (AKP), acid phosphatase (ACP), and aspartate amino transferase (AAT). Tissue specific and variation in staining intensity of EST, MDH, POD, and GTDH isozymes indicate differential gene expression in colour grape varieties. Regulatory genes may be operative in determining the number of molecules of enzymes in a cell and determining the berry skin polymorphism in four cultivars. Change frequency for berry skin colour suggest the occurrence of somatic crossing-over in naturally cultivated plants and a periclinal chimerism in Brasil cv. The four grape colour cultivars seem to be clones of the same cultivar.  相似文献   

17.
Lettuce tipburn is an irreversible physiological disorder caused by calcium deficiency that decreases the crop value. Breeding a tipburn-resistant cultivar is the only causal therapy in many cases. In this study, we investigated an efficient method to evaluate lettuce resistance to tipburn in vitro. Seedlings of 19 lettuce cultivars representing three head types were cultured on agar medium containing EGTA, which chelates Ca2+. The percentage of tipburned leaves decreased proportionally with EGTA concentration. Susceptible cultivars were distinguished at 0.01 mM EGTA, whereas resistant cultivars were classified at 1.0 mM EGTA. Based on mean values of tipburn measurements, tipburn susceptibility was highest for ‘Leaf Lettuce’, followed by ‘Butterhead Lettuce’, and then ‘Crisphead Lettuce’. Two cultivars were selected for further tests using hydroponic and pot culture. The rank order of susceptibility to tipburn in these experiments was consistent with that of the in vitro assay. The in vitro evaluation of lettuce susceptibility to calcium deficiency is useful for initial screening of lettuce cultivars against tipburn incidence. Resistant cultivars identified in this study are practical candidates for cultivation in controlled environments, such as a plant factory, while sensitive cultivars are also useful as indicator plants to monitor environmental conditions.  相似文献   

18.
 The cytoplasmic genetic male-sterile (CMS) lines developed at the International Rice Research Institute are valuable in producing tropical rice hybrids. Efficient use of CMS lines in hybrid rice production will depend on their level of genetic diversity. Aside from morphological characterization, molecular analysis based on DNA markers can provide information on the genetic diversity of the germplasm. The Amplified Fragment Length Polymorphism (AFLP) technique was used to fingerprint 71 CMS lines and four rice cultivars, ‘IR64’, ‘Azucena’, ‘IR74’, and ‘FR13A’. Eleven primer pair combinations specific to the enzymes PstI and MseI were used to generate 530 AFLP markers, 176 of which were polymorphic. Each CMS line revealed a distinct fingerprint. The AFLP marker-based dendrogram depicted genetic variation among the CMS lines. The CMS lines developed in japonica background grouped with ‘Azucena’, a japonica cultivar. None of the CMS lines clustered with ‘FR13A’, a flood-tolerant traditional indica variety. ‘IR64’ was found to be distinct from the other indica CMS lines and clustered with lines developed in its background. The grouping of CMS lines into a few groups is useful for breeders in selecting genetically diverse CMS lines for hybrid rice production and in avoiding test crossing every CMS line empirically. This study demonstrated that AFLP is a powerful and reliable tool in determining the genetic relationships and in producing distinct fingerprints of rice cultivars. Received: 20 December 1996 / Accepted: 9 October 1997  相似文献   

19.
Pyrolysis mass spectrometry (PyMS) is a rapid, simple, high-resolution analytical method based on thermal degradation of complex materials in a vacuum. It is widely applied to the discrimination of closely related microbial strains. Leaf samples from eight cultivars (‘Apricot Delight’, ‘Cooler Grape’, ‘Cooler Peppermint’, ‘Equator Grape’, ‘Equator Rose’, ‘Equator White’, ‘Equator White Eye’, and ‘Little Bright Eye’) of Catharanthus roseus were subjected to PyMS for spectral fingerprinting. Discriminant analysis (DA) of PyMS data enabled us to assign these cultivars to discrete clusters. A hierarchical dendrogram based on DA provided a possible relationship among them that was in general agreement with a previously reported classification of the cultivars based on DNA fingerprints. Furthermore, those belonging to the same ‘series’ were grouped into a single cluster, which previously could not be achieved through similar approaches based on Fourier transform infrared spectroscopy or 1H NMR data. Overall results suggest that chemical differences (i.e., in pyrolysate composition) among cultivars, as detected by mass spectrometry, reflect their genetic variation.  相似文献   

20.
Many rice cultivars that originated from lower-latitude regions exhibit a strong photoperiod sensitivity (PS) and show extremely late heading under long-day conditions. Under natural day-length conditions during the cropping season in Japan, the indica rice cultivar ‘Nona Bokra’ from India showed extremely late heading (202 days to heading) compared to the japonica cultivar ‘Koshihikari’ (105 days), from Japan. To elucidate the genetic factors associated with such extremely late heading, we performed quantitative trait locus (QTL) analyses of heading date using an F2 population and seven advanced backcross progeny (one BC1F2 and six BC2F2) derived from a cross between ‘Nona Bokra’ and ‘Koshihikari’. The analyses revealed 12 QTLs on seven chromosomes. The ‘Nona Bokra’ alleles of all QTLs contributed to an increase in heading date. Digenic interactions were rarely observed between QTLs. Based on the genetic parameters of the QTLs, such as additive effects and percentage of phenotypic variance explained, these 12 QTLs are likely generate a large proportion of the phenotypic variation observed in the heading dates between ‘Nona Bokra’ and ‘Koshihikari’. Comparison of chromosomal locations between heading date QTLs detected in this study and QTLs previously identified in ‘Nipponbare’ × ‘Kasalath’ populations revealed that eight of the heading date QTLs were recognized nearby the Hd1, Hd2, Hd3a, Hd4, Hd5, Hd6, Hd9, and Hd13. These results suggest that the strong PS in ‘Nona Bokra’ was generated mainly by the accumulation of additive effects of particular alleles at previously identified QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号