首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: During the process of docking and fusion of synaptic vesicles to the presynaptic membrane, several presynaptic proteins bind sequentially to a core complex associating two proteins of the presynaptic membrane, syntaxin and SNAP 25, and a protein of synaptic vesicles, VAMP/synaptobrevin. We have immunoprecipitated this core complex after CHAPS solubilization of pure cholinergic synaptosomes of Torpedo electric organ, using anti-syntaxin or anti-VAMP immunobeads. In parallel, we studied syntaxin and VAMP, which are transported by the rapid axonal flow to the nerve endings. We found that syntaxin and VAMP accumulating at the proximal end of an electric nerve ligature were already engaged in complexes, as in synaptosomes. In unligated nerves also, significant amounts of VAMP associate with syntaxin. The possibility that these complexes form after solubilization was eliminated because added VAMP was unable to associate with syntaxin in solubilized control nerves and because similar amounts of complex were obtained after sodium dodecyl sulfate or CHAPS solubilization. Hence, syntaxin is already associated with SNAP 25 and VAMP during axonal transport, before reaching nerve endings.  相似文献   

2.
Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.  相似文献   

3.
1. The exchangeability with added radioactive acetylcholine of the acetylcholine in isolated presynaptic nerve terminals (synaptosomes) and isolated synaptic vesicles was studied by a Sephadex-column method. 2. A substantial proportion of the synaptosomal acetylcholine is exchangeable with added radioactive acetylcholine. It is liberated by hypo-osmotic shock and ultrasonic treatment, and behaves as though it occupies the cytoplasmic compartment of synaptosomes. 3. Methods of isolating vesicles from hypo-osmotically ruptured synaptosomes in optimum yield are discussed. 4. The acetylcholine of synaptic vesicles isolated on a sucrose density gradient is released by hypo-osmotic conditions, suggesting that it is enclosed by a semi-permeable membrane; however, it is not easily released by ultrasonic treatment. 5. Added radioactive acetylcholine does not exchange with vesicular acetylcholine under a variety of different conditions. These include addition of ATP and Mg(2+), and pre-loading of the synaptosome with radioactive acetylcholine before hypo-osmotic rupture. This failure to exchange is discussed in terms of the possible storage mechanism of vesicular acetylcholine.  相似文献   

4.
Glutamate accumulation into synaptic vesicles is a pivotal step in glutamate transmission. This process is achieved by a vesicular glutamate transporter (VGLUT) coupled to v-type proton ATPase. Normal synaptic transmission, in particular during intensive neuronal firing, would demand rapid transmitter re-filling of emptied synaptic vesicles. We have previously shown that isolated synaptic vesicles are capable of synthesizing glutamate from α-ketoglutarate (not from glutamine) by vesicle-bound aspartate aminotransferase for immediate uptake, in addition to ATP required for uptake by vesicle-bound glycolytic enzymes. This suggests that local synthesis of these substances, essential for glutamate transmission, could occur at the synaptic vesicle. Here we provide evidence that synaptosomes (pinched-off nerve terminals) also accumulate α-ketoglutarate-derived glutamate into synaptic vesicles within, at the expense of ATP generated through glycolysis. Glutamine-derived glutamate is also accumulated into synaptic vesicles in synaptosomes. The underlying mechanism is discussed. It is suggested that local synthesis of both glutamate and ATP at the presynaptic synaptic vesicle would represent an efficient mechanism for swift glutamate loading into synaptic vesicles, supporting maintenance of normal synaptic transmission.  相似文献   

5.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

6.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

7.
In recent years, a role for AMPA receptors as modulators of presynaptic functions has emerged. We have investigated the presence of AMPA receptor subunits and the possible dynamic control of their surface exposure at the presynaptic membrane. We demonstrate that the AMPA receptor subunits GluR1 and GluR2 are expressed and organized in functional receptors in axonal growth cones of hippocampal neurons. AMPA receptors are actively internalized upon activation and recruited to the surface upon depolarization. Pretreatment of cultures with botulinum toxin E or tetanus toxin prevents the receptor insertion into the plasma membrane, whereas treatment with alpha-latrotoxin enhances the surface exposure of GluR2, both in growth cones of cultured neurons and in brain synaptosomes. Purification of small synaptic vesicles through controlled-pore glass chromatography, revealed that both GluR2 and GluR1, but not the GluR2 interacting protein GRIP, copurify with synaptic vesicles. These data indicate that, at steady state, a major pool of AMPA receptor subunits reside in synaptic vesicle membranes and can be recruited to the presynaptic membrane as functional receptors in response to depolarization.  相似文献   

8.
Summary Synaptosomes and synaptic junctions have been examined employing serial sections, with emphasis placed on four areas of investigation. 1. Starting from unequivocal synaptosomal profiles and tracing them through consecutive sections to the periphery of the synaptosomes, it is clear that vesicles are the one constant feature of the presynaptic terminal. In no instance was it possible to identify an empty membranous profile as synaptosomal. 2. Following a similar procedure it was found that the criteria required to predict the existence of a junctional region within a synaptosomal profile are: the accumulation of synaptic vesicles at one locus within its presynaptic component, and the presence of a postsynaptic profile characterized by two or more junctional features. 3. Serial sections of non-osmicated, PTA stained synaptic junctions confirm the regularity and orderliness of dense projection distribution along the length of the junction. 4. Complex vesicles can usually be followed in two and sometimes three adjacent sections, appearing either as intact vesicles or empty shells. Further observations confirmed that the latter profiles may be sections through the periphery of intact vesicles or through isolated shell fragments. They are more common in the latter form in unbuffered material.This work was supported in part by the Australian Research Grants Committee. We would like to thank Mr. David Stuart and Mrs. Zel Gobby for assistance with the photography.  相似文献   

9.
Summary The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synapto-somes ofTorpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5′-adenylyl imidodiphosphate as substrate and 5′-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of leed pyrophosphate precipitate.  相似文献   

10.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

11.
Gangliosides were isolated from four subcellular fractions of the electric organ ofTorpedo marmorata: synaptosomes, presynaptic membranes, postsynaptic membranes, and synaptic vesicle membranes. This exploited a principal advantage offered by this tissue: facile separation of pre-and postyynaptic elements. Total ganglioside concentration in presynaptic membranes was approximately twice that of synaptosomes and 15 times that of postsynaptic membranes (47.7, 24.4, and 3.21 g of lipid sialic acid per mg protein, respectively). Synaptic vesicle membranes had the highest overall concentration (78.9) relative to protein, but a concentration approximately comparable to that of presynaptic membranes when expressed relative to phospholipid. The thin-layer patterns of these two fractions were similar, both in terms of total pattern and the specific pattern of gangliotetraose structures as revealed by overlay with cholera toxin B subunit; these were notable for the paucity of monosialo structures and the virtual absence of GM1. Postsynaptic membranes, on the other hand, had a significantly higher content of monosialogangliosides including the presence of GM1. The synaptosomal pattern resembled that of the presynaptic membranes and synaptic vesicles. Thus, a clear difference in ganglioside pattern could be discerned between the pre- and postsynaptic elements of the electric organ.Abbreviations SVs synaptic vesicles - TLC thin-layer chromatography - cholera B-HRP B subunit of cholera toxin linked to horseradish peroxidase  相似文献   

12.
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.  相似文献   

13.
Precise regulation of neurotransmitter release is essential for the normal function of neural networks, but the mechanisms involved are largely unclear. Using superfused synaptosomes, we have studied the readily releasable pool of synaptic vesicles, measured as the amount of release triggered by hypertonic sucrose. We show that activation of presynaptic metabotropic glutamate receptors by dihydroxyphenylglycine and stimulation of protein kinase C by phorbol esters enhance the readily releasable pool of glutamate. Although the molecular nature of the readily releasable pool is unknown, one possibility is that during its generation, SNARE proteins form full core complexes, and that core complex formation occurs prior to neurotransmitter release. To test this possibility, we employed N-ethylmaleimide (NEM), an inhibitor of the ATPase N-ethylmaleimide-sensitive factor that dissociates core complexes, to study the relation of the readily releasable pool to core complex assembly in synaptosomes. NEM induced a dose-dependent increase in the readily releasable pool of neurotransmitters but by itself did not trigger release. Direct measurements of core complexes confirmed that NEM caused an increase in the levels of SNARE core complexes under these conditions. Our data suggest that in the readily releasable pool of synaptic vesicles, SNARE proteins are fully assembled into core complexes, and that SNARE complex assembly is a target of presynaptic regulation.  相似文献   

14.
Summary Pure cholinergic synaptosomes isolated from the electric organ ofTorpedo marmorata were stimulated by calcium ionophore A-23187. The effect of time course of stimulation on the changes in intramembrane particles (IMPs) on presynaptic membranes was studied by quickfreezing and aldehyde-fixation freeze-fracture. We showed that the decrease of small-particle density at the P-face and the increase of large-particle density at the E-face was maximum after 30 sec of A-23187 stimulation. Later, the density of synaptic vesicles decreased. We suggest that the redistribution of IMPs on the presynaptic membrane and acetylcholine (ACh) release from pure cholinergic synaptosomes have a similar time course when triggered by A-23187  相似文献   

15.
The morphological features of pinched-off presynaptic nerve terminals (synaptosomes) from rat brain were examined with electron microscope techniques; in many experiments, an extracellular marked (horseradish peroxidase or colloidal thorium dioxide) was included in the incubation media. When incubated in physiological saline, most terminals appeared approximately spherical, and were filled with small (approximately 400- A diameter) "synaptic vesicles"; mitochondria were also present in many of the terminals. In a number of instances the region of synaptic contact, with adhering portions of the postsynaptic cell membrane and postsynaptic density, could be readily discerned. Approximately 20--30% of the terminals in our preparations exhibited clear evidence of damage, as indicated by diffuse distribution of extracellular markers in the cytoplasm; the markers appeared to be excluded from the intraterminal vesicles under these circumstances. The markers were excluded from the cytoplasm in approximately 70--80% of the terminals, which may imply that these terminals have intact plasma membranes. When the terminals were treated with depolarizing agents (veratridine or K- rich media), in the presence of Ca, many new, large (600--900-A diameter) vesicles and some coated vesicles and new vacuoles appeared. When the media contained an extracellular marker, the newly formed structures frequently were labeled with the marker. If the veratridine- depolarized terminals were subsequently treated with tetrodotoxin (to repolarize the terminals) and allowed to "recover" for 60--90 min, most of the large marker-containing vesicles disappeared, and numerous small (approximately 400-A diameter) marker-containing vesicles appeared. These observations are consistent with the idea that pinched-off presynaptic terminals contain all of the machinery necessary for vesicular exocytosis and for the retrieval and recycling of synaptic vesicle membrane. The vesicle membrane appears to be retrieval primarily in the form of large diameter vesicles which are subsequently reprocessed to form new "typical" small-diameter synaptic vesicles.  相似文献   

16.
Abstract: The release of acetylcholine (ACh) and ATP from pure cholinergic synaptosomes isolated from the electric organ of Torpedo was studied in the same perfused sample. A presynaptic ATP release was demonstrated either by depolarization with KCl or after the action of a venom extracted from the annelid Glycera convoluta (GV). The release of ATP exhibited similar kinetics to that of ACh release and was therefore probably closely related to the latter. The ACh/ATP ratio in perfusates after KCl depolarization was 45; this was much higher than the ACh/ATP ratio in cholinergic synaptic vesicles, which was 5. The ACh/ATP ratio released after the action of GV was also higher than that of synaptic vesicles. These differences are discussed. The stoichiometry of ACh and ATP release is not consistent with the view that the whole synaptic vesicle content is released by exocytosis after KCl depolarization, as is the case for chromatin cells in the adrenal medulla.  相似文献   

17.
Polyamine transport,accumulation, and release in brain   总被引:3,自引:0,他引:3  
Cycling of polyamines (spermine and spermidine) in the brain was examined by measuring polyamine transport in synaptic vesicles, synaptosomes and glial cells, and the release of spermine from hippocampal slices. It was found that membrane potential-dependent polyamine transport systems exist in synaptosomes and glial cells, and a proton gradient-dependent polyamine transport system exists in synaptic vesicles. The glial cell transporter had high affinities for both spermine and spermidine, whereas the transporters in synaptosomes and synaptic vesicles had a much higher affinity for spermine than for spermidine. Polyamine transport by synaptosomes was inhibited by putrescine, agmatine, histidine, and histamine. Transport by glial cells was also inhibited by these four compounds and additionally by norepinephrine. On the other hand, polyamine transport by synaptic vesicles was inhibited only by putrescine and histamine. These results suggest that the polyamine transporters present in glial cells, neurons, and synaptic vesicles each have different properties and are, presumably, different molecular entities. Spermine was found to be accumulated in synaptic vesicles and was released from rat hippocampal slices by depolarization using a high concentration of KCl. Polyamines, in particular spermine, may function as neuromodulators in the brain.  相似文献   

18.
Two vesicular fractions and one nonvesicular fraction were prepared from crude synaptosomes by differential centrifugation and salting out with ammonium sulfate. Fraction 1 contained a mixture of coated vesicles, material thought to be derived from breakdown of the coats (shell fragments), and plain synaptic vesicles. Fraction 2 contained a mixture of plain synaptic vesicles and flocculent material. Fraction 3 contained flocculent material only. Fractions 1 and 3 were partially purified by passage through a Sephadex column. Fraction 3 contained no shell fragments but contained finer flocculent material which, it is suggested, is composed of unit particles either occurring singly or linked together into chainlike or amorphous aggregates. Each unit particle appears to have four subunits and is here referred to as a tetrasome. Tetrasomes sometimes appear to be attached to the surfaces of the plain synaptic vesicles. Also, it is possible that aggregates of tetrasomes form part of the structure of the presynaptic dense projections.  相似文献   

19.
Inhibition of vesicular uptake of monoamines by hyperforin   总被引:5,自引:0,他引:5  
Roz N  Mazur Y  Hirshfeld A  Rehavi M 《Life sciences》2002,71(19):2227-2237
Hyperforin is the major active ingredient of Hypericum perforatum (St John's Wort), a traditional antidepressant medication. This study evaluated its inhibitory effects on the synaptic uptake of monoamines in rat forebrain homogenates, comparing the nature of the inhibition at synaptic and vesicular monoamine transporters. A hyperforin-rich extract inhibited with equal potencies the sodium-dependent uptake of the monoamine neurotransmitters serotonin [5-HT], dopamine [DA] and norepinephrine [NE] into rat brain synaptosomes. Hyperforin inhibited the uptake of all three monoamines noncompetitively, in marked contrast with the competitive inhibition exerted by fluoxetine, GBR12909 or desipramine on the uptake of these monoamines. Hyperforin had no inhibitory effect on the binding of [3H]paroxetine, [3H]GBR12935 and [3H]nisoxetine to membrane presynaptic transporters for 5-HT, DA and NE, respectively. The apparent presynaptic inhibition of monoamine uptake could reflect a "reserpine-like mechanism" by which hyperforin induced release of neurotransmitters from synaptic vesicles into the cytoplasm. Thus, we assessed the effects of hyperforin on the vesicular monoamine transporter. Hyperforin inhibited with equal potencies the uptake of the three tritiated monoamines to rat brain synaptic vesicles. Similarly to the synaptosomal uptake, the vesicular uptake was also noncompetitively inhibited by hyperforin. Notably, hyperforin did not affect the direct binding on [3H]dihydrotetrabenazine, a selective vesicular monoamine transporter ligand, to rat forebrain membranes. Our results support the notion that hyperforin interferes with the storage of monoamines in synaptic vesicles, rather than being a selective inhibitor of either synaptic membrane or vesicular monoamine transporters.  相似文献   

20.

Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号