首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nelson CM  Chen CS 《FEBS letters》2002,514(2-3):238-242
We report a novel mechanism of cellular growth control. Increasing the density of endothelial or smooth muscle cells in culture increased cell-cell contact and decreased cell spreading, leading to growth arrest. Using a new method to independently control cell-cell contact and cell spreading, we found that introducing cell-cell contact positively regulates proliferation, but that contact-mediated proliferation can be masked by changes in cell spreading: Round cells with many contacts proliferated less than spread cells with none. Physically blocking cell-cell contact or inhibiting PI3K signaling abrogated cell-cell induced proliferation, but inhibiting diffusible paracrine signaling did not. Thus, direct cell-cell contact induces proliferation in these cells.  相似文献   

2.
3.
Cadherin-mediated cell-cell adhesion controls the morphology and function of epithelial cells and is a critical component of the pathology of chronic inflammatory disorders. Dynamic interactions between cadherins and the actin cytoskeleton are required for stable cell-cell contact. Besides actin, microtubules also target intercellular, cadherin-based junctions and contribute to their formation and stability. Here, we studied the role of microtubules in conjunction with Rho-like GTPases in the regulation of lung epithelial barrier function using real-time monitoring of transepithelial electrical resistance. Unexpectedly, we found that disruption of microtubules promotes epithelial cell-cell adhesion. This increase in epithelial barrier function is accompanied by the accumulation of beta-catenin at cell-cell junctions, as detected by immunofluorescence. Moreover, we found that the increase in cell-cell contact, induced by microtubule depolymerization, requires signaling through a RhoA/Rho kinase pathway. The Rac-1 GTPase counteracts this pathway, because inhibition of Rac-1 signaling rapidly promotes epithelial barrier function, in a microtubule- and RhoA-independent fashion. Together, our data suggest that microtubule-RhoA-mediated signaling and Rac-1 control lung epithelial integrity through counteracting independent pathways.  相似文献   

4.
During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum.  相似文献   

5.
Cyclic adenosine 3':5' monophosphate (cAMP) and cell-cell contact regulate developmental gene expression in Dictyostelium discoideum. Developing D. discoideum amoebae synthesize and secrete cAMP following the binding of cAMP to their surface cAMP receptor, a response called cAMP signaling. We have demonstrated two responses of developing D. discoideum amoebae to cell-cell contact. Cell-cell contact elicits cAMP secretion and alters the amount of cAMP secreted in a subsequent cAMP signaling response. Depending upon experimental conditions, bacterial-amoebal contact and amoebal-amoebal contact can enhance or diminish the amount of cAMP secreted during a subsequent cAMP signaling response. We have hypothesized that cell-cell contact regulates D. discoideum development by altering cellular and extracellular levels of cAMP. To begin testing this hypothesis, these responses were further characterized. The two responses to cell-cell contact are independent, i.e., they can each occur in the absence of the other. The responses to cell-cell contact also have unique temperature dependences when compared to each other, cAMP signaling, and phagocytosis. This suggests that these four responses have unique steps in their transduction mechanisms. The secretion of cAMP in response to cell-cell contact appears to be a non-specific response; contact between D. discoideum amoebae and Enterobacter aerogenes, latex beads, or other amoebae elicits cAMP secretion. Despite the apparent similarities of the effects of bacterial-amoebal and amoebal-amoebal contact on the cAMP signaling response, this contact-induced response appears to be specific. Latex beads addition does not alter the magnitude of a subsequent cAMP signaling response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cell adhesion molecules play a critical role in cell contacts, whether cell-cell or cell-matrix, and are regulated by multiple signaling pathways. In this report, we identify a novel ring zinc finger-leucine-rich repeat containing protein (RIFLE) and show that RIFLE, expressed in PC12 cells, enhances the Serine (Ser)21/9 phosphorylation of glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) resulting in the inhibition of GSK-3 kinase activity and increase of beta-catenin levels. RIFLE expression also is associated with elevated E-cadherin protein levels but not N-cadherin. The regulation of these cell adhesion-associated molecules by RIFLE is accompanied by a significant increase in cell-cell and cell-matrix adhesion. Moreover, increase in cell-cell adhesion but not cell-matrix adhesion by RIFLE can be mimicked by selective inhibition of GSK-3. Our results suggest that RIFLE represents a novel signaling protein that mediates components of the Wnt/wingless signaling pathway and cell adhesion in PC12 cells.  相似文献   

7.
Harb N  Archer TK  Sato N 《PloS one》2008,3(8):e3001

Background

Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity, molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at the signaling level remain underexplored.

Methodology/Principal Findings

Here we show that endogenous Rho signaling is required for the maintenance of cell-cell contacts in ES cells. siRNA-mediated loss of function experiments demonstrated that Rock, a major effector kinase downstream of Rho, played a key role in the formation of cell-cell junctional assemblies through regulation of myosin II by controlling a myosin light chain phosphatase. Chemical engineering of this signaling axis by a Rock-specific inhibitor revealed that cell-cell adhesion was reversibly controllable and dispensable for self-renewal of mouse ES cells as confirmed by chimera assay. Furthermore, a novel culture system combining a single synthetic matrix, defined medium, and the Rock inhibitor fully warranted human ES cell self-renewal independent of animal-derived matrices, tight cell contacts, or fibroblastic niche-forming cells as determined by teratoma formation assay.

Conclusions/Significance

These findings demonstrate an essential role of the Rho-Rock-Myosin signaling axis for the regulation of basic cell-cell communications in both mouse and human ES cells, and would contribute to advance in medically compatible xeno-free environments for human pluripotent stem cells.  相似文献   

8.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

9.
Dynamically regulated cell-cell adhesion is crucial for morphogenesis during embryonic development and tumor progression. The cadherins as calcium-dependent cell-cell adhesion proteins represent key molecules in these tissue movements. How cadherins serve in maintaining tissue cohesion during migration, facilitate cell-cell communication and promote signaling will be summarized in this review.  相似文献   

10.
PTPmu, an Ig superfamily receptor protein-tyrosine phosphatase, promotes cell-cell adhesion and interacts with the cadherin-catenin complex. The signaling pathway downstream of PTPmu is unknown; therefore, we used a yeast two-hybrid screen to identify additional PTPmu interacting proteins. The membrane-proximal catalytic domain of PTPmu was used as bait. Sequencing of two positive clones identified the scaffolding protein RACK1 (receptor for activated protein C kinase) as a PTPmu interacting protein. We demonstrate that RACK1 interacts with PTPmu when co-expressed in a recombinant baculovirus expression system. RACK1 is known to bind to the src protein-tyrosine kinase. This study demonstrates that PTPmu association with RACK1 is disrupted by the presence of constituitively active src. RACK1 is thought to be a scaffolding protein that recruits proteins to the plasma membrane via an unknown mechanism. We have shown that the association of endogenous PTPmu and RACK1 in a lung cell line is increased at high cell density. We also demonstrate that the recruitment of RACK1 to both the plasma membrane and cell-cell contact sites is dependent upon the presence of the PTP mu protein in these cells. Therefore, PTPmu may be one of the proteins that recruits RACK1 to points of cell-cell contact, which may be important for PTPmu-dependent signaling in response to cell-cell adhesion.  相似文献   

11.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

12.
Melanoblasts (Mbs) are thought to be strictly regulated by cell-cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell-cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis.  相似文献   

13.
beta-Catenin signaling in biological control and cancer   总被引:7,自引:0,他引:7  
  相似文献   

14.
Retinoic acid synthesis and signaling during early organogenesis   总被引:2,自引:0,他引:2  
Duester G 《Cell》2008,134(6):921-931
Retinoic acid, a derivative of vitamin A, is an essential component of cell-cell signaling during vertebrate organogenesis. In early development, retinoic acid organizes the trunk by providing an instructive signal for posterior neuroectoderm and foregut endoderm and a permissive signal for trunk mesoderm differentiation. At later stages, retinoic acid contributes to the development of the eye and other organs. Recent studies suggest that retinoic acid may act primarily in a paracrine manner and provide insight into the cell-cell signaling networks that control differentiation of pluripotent cells.  相似文献   

15.
Classical cadherins accumulate at cell-cell contacts as a characteristic response to productive adhesive ligation. Such local accumulation of cadherins is a developmentally regulated process that supports cell adhesiveness and cell-cell cohesion. Yet the molecular effectors responsible for cadherin accumulation remain incompletely understood. We now report that Myosin 2 is critical for cells to concentrate E-cadherin at cell-cell contacts. Myosin 2 is found at cadherin-based cell-cell contacts and its recruitment requires E-cadherin activity. Indeed, both Myosin 2 recruitment and its activation were stimulated by E-cadherin homophilic ligation alone. Inhibition of Myosin 2 activity by blebbistatin or ML-7 rapidly impaired the ability of cells to concentrate E-cadherin at adhesive contacts, accompanied by decreased cadherin-based cell adhesiveness. The total surface expression of cadherins was unaffected, suggesting that Myosin 2 principally regulates the regional distribution of cadherins at the cell surface. The recruitment of Myosin 2 to cadherin contacts, and its activation, required Rho kinase; furthermore, inhibition of Rho kinase signaling effectively phenocopied the effects of Myosin 2 inhibition. We propose that Myosin 2 is a key effector of Rho-Rho kinase signaling that regulates cell-cell adhesion by determining the ability of cells to concentrate cadherins at contacts in response to homophilic ligation.  相似文献   

16.
Development of organ-specific size and shape demands tight coordination between tissue growth and cell-cell adhesion. Dynamic regulation of cell adhesion proteins thus plays an important role during organogenesis. In Drosophila, the homophilic cell adhesion protein DE-Cadherin (DE-Cad) regulates epithelial cell-cell adhesion at adherens junctions (AJs). Here, we show that along the proximodistal (PD) axis of the developing wing epithelium, apical cell shapes and expression of DE-Cad are graded in response to Wingless (Wg), a morphogen secreted from the dorsoventral (DV) organizer in distal wing, suggesting a PD gradient of cell-cell adhesion. The Fat (Ft) tumor suppressor, by contrast, represses DE-Cad expression. In genetic tests, ft behaves as a suppressor of Wg signaling. Cytoplasmic pool of beta-catenin/Arm, the intracellular transducer of Wg signaling, is negatively correlated with the activity of Ft. Moreover, unlike that of Wg, signaling by Ft negatively regulates the expression of Distalless (Dll) and Vestigial (Vg). Finally, we show that Ft intersects Wnt/Wg signaling, downstream of the Wg ligand. Fat and Wg signaling thus exert opposing regulation to coordinate cell-cell adhesion and patterning along the PD axis of Drosophila wing.  相似文献   

17.
BACKGROUND: Starving amoebae of Dictyostelium discoideum communicate by relaying extracellular cAMP signals, which direct chemotactic movement, resulting in the aggregation of thousands of cells into multicellular aggregates. Both cAMP relay and chemotaxis require the activation of PI3 kinase signaling. The spatiotemporal dynamics of PI3 kinase signaling can be followed in individual cells via the cAMP-induced membrane recruitment of a GFP-tagged PH domain-containing protein, CRAC, which is required for the activation of adenylylcyclase.RESULTS: We show that polarized periodic CRAC-GFP translocation occurs during the aggregation and mound stages of development in response to periodic cAMP signals. The duration of CRAC translocation to the membrane is determined by the duration of the rising phase of the cAMP signal. The system shows rapid adaptation and responds to the rate of change of the extracellular cAMP concentration. When the cells are in close contact, it takes 10 s for the signal to propagate from one cell to the next. In slugs, all cells show a permanent polarized PI3 kinase signaling in their leading edge, which is dependent on cell-cell contact.CONCLUSIONS: Measuring the redistribution of GFP-tagged CRAC has enabled us to study the dynamics of PI3 kinase-mediated cell-cell communication at the individual cell level in the multicellular stages of Dictyostelium development. This approach should also be useful to study the interactions between cell-cell signaling, cell polarization, and movement in the development of other organisms.  相似文献   

18.
E-cadherin adhesion activates c-Src signaling at cell-cell contacts   总被引:1,自引:0,他引:1       下载免费PDF全文
Cadherin-based cell-cell contacts are prominent sites for phosphotyrosine signaling, being enriched in tyrosine-phosphorylated proteins and tyrosine kinases and phosphatases. The functional interplay between cadherin adhesion and tyrosine kinase signaling, however, is complex and incompletely understood. In this report we tested the hypothesis that cadherin adhesion activates c-Src signaling and sought to assess its impact on cadherin function. We identified c-Src as part of a cadherin-activated cell signaling pathway that is stimulated by ligation of the adhesion receptor. However, c-Src has a biphasic impact on cadherin function, exerting a positive supportive role at lower signal strengths, but inhibiting function at high signal strengths. Inhibiting c-Src under circumstances when it is activated by cadherin adhesion decreased several measures of cadherin function. This suggests that the cadherin-activated c-Src signaling pathway serves positively to support cadherin function. Finally, our data implicate PI3-kinase signaling as a target for cadherin-activated c-Src signaling that contributes to its positive impact on cadherin function. We conclude that E-cadherin signaling is an important activator of c-Src at cell-cell contacts, providing a key input into a signaling pathway where quantitative changes in signal strength may result in qualitative differences in functional outcome.  相似文献   

19.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

20.
Correct orientation of the mitotic spindle is crucial for the proper segregation of localized determinants and the correct spatial organization of cells in early embryos. The cues dividing cells use to orient their mitotic spindles are currently the subject of intensive investigation in a number of model systems. One of the cues that cells use during spindle orientation is provided by components of the Wnt signaling pathway. Because of its stereotypical cleavage divisions, the availability of Wnt pathway mutants and the ability to perform RNAi, and because cell-cell interactions can be studied in vitro, the C. elegans embryo continues to be a useful system for identifying specific cell-cell interactions in which Wnt-dependent signals polarize the mitotic spindle. This review discusses the evidence for involvement of Wnt signaling during spindle orientation in several contexts in the early C. elegans embryo, a process that involves upstream Wnt effectors but does not involve downstream nuclear effectors of Wnt signaling, and places this Wnt spindle orientation pathway in the larger context of other known modulators of spindle orientation in animal embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号