首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.  相似文献   

2.
Vertebrate rhodopsin shares with other retinal proteins the 11-cis-retinal chromophore and the light-induced 11-cis/trans isomerization triggering its activation pathway. However, only in rhodopsin the retinylidene Schiff base bond to the apoprotein is eventually hydrolyzed, making a complex regeneration pathway necessary. Metabolic regeneration cannot be short-cut, and light absorption in the active metarhodopsin (Meta) II intermediate causes anti/syn isomerization around the retinylidene linkage rather than reversed trans/cis isomerization. A new deactivating pathway is thereby triggered, which ends in the Meta III "retinal storage" product. Using time-resolved Fourier transform infrared spectroscopy, we show that the identified steps of receptor activation, including Schiff base deprotonation, protein structural changes, and proton uptake by the apoprotein, are all reversed. However, Schiff base reprotonation is much faster than the activating deprotonation, whereas the protein structural changes are slower. The final proton release occurs with pK approximately 4.5, similar to the pK of a free Glu residue and to the pK at which the isolated opsin apoprotein becomes active. A forced deprotonation, equivalent to the forced protonation in the activating pathway, which occurs against the unfavorable pH of the medium, is not observed. This explains properties of the final Meta III product, which displays much higher residual activity and is less stable than rhodopsin arising from regeneration with 11-cis-retinal. We propose that the anti/syn conversion can only induce a fast reorientation and distance change of the Schiff base but fails to build up the full set of dark ground state constraints, presumably involving the Glu(134)/Arg(135) cluster.  相似文献   

3.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

4.
Deactivation of light-activated rhodopsin (metarhodopsin II) involves, after rhodopsin kinase and arrestin interactions, the hydrolysis of the covalent bond of all-trans-retinal to the apoprotein. Although the long-lived storage form metarhodopsin III is transiently formed, all-trans-retinal is eventually released from the active site. Here we address the question of whether the release results in a retinal that is freely diffusible in the lipid phase of the photoreceptor membrane. The release reaction is accompanied by an increase in intrinsic protein fluorescence (release signal), which arises from the relief of the fluorescence quenching imposed by the retinal in the active site. An analogous fluorescence decrease (uptake signal) was evoked by exogenous retinoids when they non-covalently bound to native opsin membranes. Uptake of 11-cis-retinal was faster than formation of the retinylidene linkage to the apoprotein. Endogenous all-trans-retinal released from the active site during metarhodopsin II decay did not generate the uptake signal. The data show that in addition to the retinylidene pocket (site I) there are two other retinoidbinding sites within opsin. Site II involved in the uptake signal is an entrance site, while the exit site (site III) is occupied when retinal remains bound after its release from site I. Support for a retinal channeling mechanism comes from the rhodopsin crystal structure, which unveiled two putative hydrophobic binding sites. This mechanism enables a unidirectional process for the release of photoisomerized chromophore and the uptake of newly synthesized 11-cis-retinal for the regeneration of rhodopsin.  相似文献   

5.
In the phototransduction pathway of rhodopsin, the metarhodopsin (Meta) III retinal storage form arises from the active G-protein binding Meta II by a slow spontaneous reaction through the Meta I precursor or by light absorption and photoisomerization, respectively. Meta III is a side product of the Meta II decay path and holds its retinal in the original binding site, with the Schiff base bond to the apoprotein reprotonated as in the dark ground state. It thus keeps the retinal away from the regeneration pathway in which the photolyzed all-trans-retinal is released. This study was motivated by our recent observation that Meta III remains stable for hours in membranes devoid of regulatory proteins, whereas it decays much more rapidly in situ. We have now explored the possibility of regulated formation and decay of Meta III, using intrinsic opsin tryptophan fluorescence and UV-visible and Fourier transform infrared spectroscopy. We find that a rapid return of Meta III into the regeneration pathway is triggered by the G-protein transducin (G(t)). Depletion of the retinal storage is initiated by a novel direct bimolecular interaction of G(t) with Meta III, which was previously considered inactive. G(t) thereby induces the transition of Meta III into Meta II, so that the retinylidene bond to the apoprotein can be hydrolyzed, and the retinal can participate again in the normal retinoid cycle. Beyond the potential significance for retinoid metabolism, this may provide the first example of a G-protein-catalyzed conversion of a receptor.  相似文献   

6.
Mahalingam M  Vogel R 《Biochemistry》2006,45(51):15624-15632
Meta III is formed during the decay of rhodopsin's active receptor state at neutral to alkaline pH by thermal isomerization of the retinal Schiff base C15=N bond, converting the ligand from all-trans 15-anti to all-trans 15-syn. The thereby induced change of ligand geometry switches the receptor to an inactive conformation, such that the decay pathway to Meta III contributes to the deactivation of the signaling state at higher pH values. We have examined the conformation of Meta III over a wider pH range and found that Meta III exists in a pH-dependent conformational equilibrium between this inactive conformation at neutral to alkaline pH and an active conformation similar to that of Meta II, which, however, is assumed at very acidic pH only. The apparent pKa of this transition is around 5.1 and thus several units lower than that of the Meta I/Meta II photoproduct equilibrium with its all-trans 15-anti ligand, but still about 1 unit higher than that of the opsin conformational equilibrium in the absence of ligand. The all-trans-15-syn-retinal chromophore is therefore not an inverse agonist like 11-cis- or 9-cis-retinal, which lock the receptor in an inactive conformation, but a classical partial agonist, which is capable of activating the receptor, yet with an efficiency considerably lower than the full agonist all-trans 15-anti. As the Meta III chromophore differs structurally from this full agonist only in the isomeric state of the C15=N bond, this ligand represents an excellent model system to study principal mechanisms of partial agonism which are helpful to understand the partial agonist behavior of other ligands.  相似文献   

7.
Vogel R  Siebert F  Mathias G  Tavan P  Fan G  Sheves M 《Biochemistry》2003,42(33):9863-9874
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C[double bond]N, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.  相似文献   

8.
Phototransduction results from a cascade of reactions that culminate in a neuronal signal. Photoisomerization of rhodopsin's chromophore, 11-cis-retinal to all-trans-retinal, leads to the formation of the activated photoproduct metarhodopsin II (Meta II). Subsequently, Meta II initiates the excitation events by activating many copies of the rod cell-specific G-proteins (Gt or transducin). To terminate the signal, the long-lived Meta II must be quenched. Deactivation of Meta II involves phosphorylation by rhodopsin kinase followed by the binding of arrestin. In order to recycle rhodopsin for phototransduction, arrestin must dissociate, and the chromophore must be replaced. In this study, we show that the reduction of the photolyzed chromophore all-trans-retinal to all-trans-retinol is essential for recycling photoactivated rhodopsin. Once this reduction has occurred, the arrestin blockade of the receptor is removed, the chromophore site becomes accessible for regeneration, and the phosphates can be hydrolyzed. If the reduction does not occur, we demonstrate that free all-trans-retinal can react with the apoprotein to form pseudo-photoproducts that are spectrally identical to the photoinduced metarhodopsin species (Meta I/II/III). The Meta II-like product, M380, interacts tightly with arrestin and kinase, however, it does not measurably interact with Gt. The persistent blockade by arrestin and the low affinity for Gt together prevent activation of the visual cascade. Therefore, any insufficiency in the reduction of all-trans-retinal to all-trans-retinol may lead to the accumulation of M380-arrestin in situ, which may effect adaptational processes.  相似文献   

9.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

10.
Vogel R  Siebert F  Zhang XY  Fan G  Sheves M 《Biochemistry》2004,43(29):9457-9466
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.  相似文献   

11.
We have applied our recently developed technique of flash induced kinetic infrared spectroscopy to the rhodopsin/Meta I and rhodopsin/Meta II transitions. Features of the infrared spectrum reflecting the C=C-vibration and the isomeric form of the chromophore are in agreement with resonant Raman experiments. Different results are obtained for the C=N-vibration of the Schiff base retinal opsin link. They are interpreted in terms of a Schiff base protonated via an hydrogen bond. A proton transfer in the excited state is suggested to explain the deviating results. In addition we have obtained spectral changes which cannot be attributed to molecular changes in the chromophore. We assume that these spectral features reflect molecular events in the protein part of rhodopsin.  相似文献   

12.
Absorption of light in rhodopsin leads through 11-cis- and all-trans-retinal isomerization, proton transfers, and structural changes to the active G-protein binding meta-II state. When meta-II is photolysed by blue light absorption, the activating pathway is apparently reverted, and rhodopsin is photoregenerated. However, the product formed, a P subspecies with A(max) = 500 nm (P(500)), is different from the ground state based on the following observations: (i) the ground state fingerprint of 11-cis-retinal does not appear in the infrared spectra, although the proton transfers and structural changes are reverted; (ii) extraction of the retinal from P(500) does not yield the expected stoichiometric amount of 11-cis-retinal but predominantly yields all-trans-retinal; (iii) the infrared spectrum of P(500) is similar to the classical meta-III intermediate, which arises from meta-II by thermal decay; and (iv) both P(500) and meta-III can be photoconverted to meta-II with the same changes in the infrared spectrum and without a significant change in the isomerization state of the extracted chromophore. The data indicate the presence of a "second switch" between active and inactive conformations that operates by photolysis but without isomerization around the C(11)-C(12) double bond. This emphasizes the exclusivity of the ground state, which is only accessible by the metabolic regeneration with 11-cis-retinal.  相似文献   

13.
The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium.  相似文献   

14.
R D Calhoon  R R Rando 《Biochemistry》1985,24(23):6446-6452
The absorption of a photon of light by rhodopsin results in the cis to trans isomerization of the 11-cis-retinal Schiff base chromophore. In the studies reported here, an attempt is made to determine the mechanism of the energization of rhodopsin as it relates to the chemistry of the isomerization process and the geometrical state of the chromophore. Studies were performed with vitamin A analogues to probe this mechanism. Both 11-cis-7,8-dihydroretinal and 9-cis-7,8-dihydroretinal form bleachable pigments when combined with opsin. Photolysis of these pigments in the presence of G-protein results in the activation of the latter as revealed by its GTPase activity. Phosphodiesterase is also activated when it is included in the incubation. Therefore, the possibility that rhodopsin is energized by mechanisms involving photochemically induced charge transfer from the protonated Schiff base to the beta-ionone ring can be discarded. Further studies were conducted with all-trans-vitamin A derivatives to determine if these compounds can form the GTPase-activating state R*, a situation that is possible, in principle, by microscopic reversibility. Neither all-trans-retinal nor its oxime, when incubated with bovine opsin in the dark, caused activation of the GTPase, requiring at least a 5 kcal/mol energy gap between them. Furthermore, stoichiometric adducts of all-trans-retinoids and opsin were also unable to mediate activation of the GTPase. Since both all-trans-15,16-dihydroretinylopsin and all-trans-retinoylopsin possess an all-trans-retinoid permanently adducted to opsin, it can be concluded that the all-trans-retinoid chromophore-opsin linkage may be necessary but not sufficient to achieve activation of the visual pigment.  相似文献   

15.
Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II   总被引:7,自引:0,他引:7  
The resonance Raman spectra of bovine metarhodopsin I and metarhodopsin II have been measured. The spectra are compared with model chromophore resonance Raman data. It was found that metarhodopsin I is linked to opsin via a protonated Schiff base linkage, whereas metarhodopsin II is linked by an unprotonated Schiff base. A recent suggestion that the chromophore of metarhodopsin II is retinal is explicitly disproved. The chromophores of both metarhodopsins are found to have an essentially all-trans conformation. The basic mechanism for color regulation in both forms appears to be electron delocalization. The data tend to support the model of cis-trans isomerization as the primary mechanism for vision. Also, the conclusions and inferences of this work on energy uses and storage by rhodopsin in neural generation are discussed.  相似文献   

16.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2007,46(21):6437-6445
A visual pigment consists of an opsin protein and a chromophore, 11-cis-retinal, which binds to a specific lysine residue of opsin via a Schiff base linkage. The Schiff base chromophore is protonated in pigments that absorb visible light, whereas it is unprotonated in ultraviolet-absorbing visual pigments (UV pigments). To investigate whether an unprotonated Schiff base can undergo photoisomerization as efficiently as a protonated Schiff base in the opsin environment, we measured the quantum yields of the bovine rhodopsin E113Q mutant, in which the Schiff base is unprotonated at alkaline pH, and the mouse UV pigment (mouse UV). Photosensitivities of UV pigments were measured by irradiation of the pigments followed by chromophore extraction and HPLC analysis. Extinction coefficients were estimated by comparing the maximum absorbances of the original pigments and their acid-denatured states. The quantum yield of the bovine rhodopsin E113Q mutant at pH 8.2, where the Schiff base is unprotonated, was significantly lower than that of wild-type rhodopsin, whereas the mutant gave a quantum yield almost identical to that of the wild type at pH 5.5, where the Schiff base is protonated. These results suggest that Schiff base protonation plays a role in increasing quantum yield. The quantum yield of mouse UV, which has an unprotonated Schiff base chromophore, was significantly higher than that of the unprotonated form of the rhodopsin E113Q mutant, although it was still lower than the visible-absorbing pigments. These results suggest that the mouse UV pigment has a specific mechanism for the efficient photoisomerization of its unprotonated Schiff base chromophore.  相似文献   

17.
The G-protein-coupled receptor rhodopsin is activated by photoconversion of its covalently bound ligand 11-cis-retinal to the agonist all-trans-retinal. After light-induced isomerization and early photointermediates, the receptor reaches a G-protein-dependent equilibrium between active and inactive conformations distinguished by the protonation of key opsin residues. In this report, we study the role of the 9-methyl group of retinal, one of the crucial steric determinants of light activation. We find that when this group is removed, the protonation equilibrium is strongly shifted to the inactive conformation. The residually formed active species is very similar to the active form of normal rhodopsin, metarhodopsin II. It has a deprotonated Schiff base, binds to the retinal G-protein transducin, and is favored at acidic pH. Our data show that the normal proton transfer reactions are inhibited in 9-demethyl rhodopsin but are still mandatory for receptor activation. We propose that retinal and its 9-methyl group act as a scaffold for opsin to adjust key proton donor and acceptor side chains for the proton transfer reactions that stabilize the active conformation. The mechanism may also be applicable to related receptors and may thus explain the partial agonism of certain ligands.  相似文献   

18.
In rhodopsin's function as a photoreceptor, 11-cis-retinal is covalently bound to Lys(296) via a protonated Schiff base. 11-cis/all-trans photoisomerization and relaxation through intermediates lead to the metarhodopsin II photoproduct, which couples to transducin (G(t)). Here we have analyzed a different signaling state that arises from noncovalent binding of all-trans-retinal (atr) to the aporeceptor opsin and enhances the very low opsin activity by several orders of magnitude. Like with metarhodopsin II, coupling of G(t) to opsin-atr is sensitive to competition by synthetic peptides from the COOH termini of both G(t)alpha and G(t)gamma. However, atr does not compete with 11-cis-retinal incorporation into the Lys(296) binding site and formation of the light-sensitive pigment. Blue light illumination fails to photorevert opsin-atr to the ground state. Thus noncovalently bound atr has no access to the light-dependent binding site and reaction pathway. Moreover, in contrast to light-dependent signaling, removal of the palmitoyl anchors at Cys(322) and Cys(323) in the rhodopsin COOH terminus impairs the atr-stimulated activity. Repalmitoylation by autoacylation with palmitoyl-coenzyme A restores most of the original activity. We hypothesize that the palmitoyl moieties are part of a second binding pocket for the chromophore, mediating hydrophobic interactions that can activate a large part of the catalytic receptor/G-protein interface.  相似文献   

19.
Light-dependent production of 11-cis-retinal by the retinal pigment epithelium (RPE) and normal regeneration of rhodopsin under photic conditions involve the RPE retinal G protein-coupled receptor (RGR) opsin. This microsomal opsin is bound to all-trans-retinal which, upon illumination, isomerizes stereospecifically to the 11-cis isomer. In this paper, we investigate the synthesis of the all-trans-retinal chromophore of RGR in cultured ARPE-hRGR and freshly isolated bovine RPE cells. Exogenous all-trans-[(3)H]retinol is incorporated into intact RPE cells and converted mainly into retinyl esters and all-trans-retinal. The intracellular processing of all-trans-[(3)H]retinol results in physiological binding to RGR of a radiolabeled retinoid, identified as all-trans-[(3)H]retinal. The ARPE-hRGR cells contain a membrane-bound NADPH-dependent retinol dehydrogenase that reacts efficiently with all-trans-retinol but not the 11-cis isomer. The NADPH-dependent all-trans-retinol dehydrogenase activity in isolated RPE microsomal membranes can be linked in vitro to specific binding of the chromophore to RGR. These findings provide confirmation that RGR opsin binds the chromophore, all-trans-retinal, in the dark. A novel all-trans-retinol dehydrogenase exists in the RPE and performs a critical function in chromophore biosynthesis.  相似文献   

20.
The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH-/-) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH-/- mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号