首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

2.
A method for measuring the maximal velocity of knee extension exercise is described using a very light lever arm. Instrumentation of the lever arm with a potentiometer and accelerometer also allows for the measurement of peak acceleration, time to peak acceleration, the average rate of development of acceleration (jerk) and peak torque. With this apparatus and surface electromyography, electromechanical delay (EMD) was also determined. This apparatus was tested using 17 female and 10 male subjects, and the measures obtained were related to the percentage of fast twitch fibres (% FT) and the relative area of fast twitch fibres (% FTA) in the vastus lateralis determined from duplicate muscle biopsy samples. Peak velocity of unloaded knee extension averaged 12.1 +/- 1.2 and 12.2 +/- 1.7 rad.s-1 for females and males, respectively, and were not significantly different. As well, peak acceleration, time to peak acceleration jerk and EMD values were not significantly different between the female and male subjects, but the mean peak torque for the female subjects (73.5 +/- 14.7 N.m) was significantly lower than that for the males (98.4 +/- 31.5 N.m). Peak acceleration was significantly correlated with %FT (r = 0.40, P = 0.04) for the total subject population. None of the other measures was significantly related to either %FT or %FTA for the male and female subjects or the combined population of subjects.  相似文献   

3.
We investigated the role of central activation in muscle length-dependent endurance. Central activation ratio (CAR) and rectified surface electromyogram (EMG) were studied during fatigue of isometric contractions of the knee extensors at 30 and 90 degrees knee angles (full extension = 0 degree). Subjects (n = 8) were tested on a custom-built ergometer. Maximal voluntary isometric knee extension with supramaximal superimposed burst stimulation (three 100-mus pulses; 300 Hz) was performed to assess CAR and maximal torque capacity (MTC). Surface EMG signals were obtained from vastus lateralis and rectus femoris muscles. At each angle, intermittent (15 s on 6 s off) isometric exercise at 50% MTC with superimposed stimulation was performed to exhaustion. During the fatigue task, a sphygmomanometer cuff around the upper thigh ensured full occlusion (400 mmHg) of the blood supply to the knee extensors. At least 2 days separated fatigue tests. MTC was not different between knee angles (30 degrees : 229.6 +/- 39.3 N.m vs. 90 degrees: 215.7 +/- 13.2 N.m). Endurance times, however, were significantly longer (P < 0.05) at 30 vs. 90 degrees (87.8 +/- 18.7 vs. 54.9 +/- 12.1 s, respectively) despite the CAR not differing between angles at torque failure (30 degrees: 0.95 +/- 0.05 vs. 90 degrees: 0.96 +/- 0.03) and full occlusion of blood supply to the knee extensors. Furthermore, rectified surface EMG values of the vastus lateralis (normalized to prefatigue maximum) were also similar at torque failure (30 degrees : 56.5 +/- 12.5% vs. 90 degrees : 58.3 +/- 15.2%), whereas rectus femoris EMG activity was lower at 30 degrees (44.3 +/- 12.4%) vs. 90 degrees (69.5 +/- 25.3%). We conclude that differences in endurance at different knee angles do not find their origin in differences in central activation and blood flow but may be a consequence of muscle length-related differences in metabolic cost.  相似文献   

4.
The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

6.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

7.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

8.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

9.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

10.
The force velocity relationship of in vivo human muscle fibers has often been derived from the torque-angular speed relationship during maximal voluntary isokinetic contractions. However, the assumption of a close association between joint performance and muscle mechanics is questionable. We aimed to determine the relationship between knee extension angular speeds, vastus lateralis fascicle and muscle tendon unit (MTU) shortening speeds, and maximal knee extensor force for the entire range of knee joint movement, for the isokinetic range, and for the ranges before, after and at peak torque occurrence, with different commonly used pre-loading conditions. Higher peak forces were observed when knee extensions were preceded by a pre-load, despite the similarity in fascicle shortening speeds. For the entire and the isokinetic range, MTU always shortened faster than fascicles, and this difference increased as joint speed increased. Interestingly, fascicle shortening velocities were greater before compared to after peak torque occurrence while the opposite happened at the MTU level. Assuming a close relationship between joint and fascicle dynamics results in an overestimation of muscle contractile component shortening velocity or force production at peak torque. The force velocity relationships obtained in vivo depend crucially on the test conditions, and the movement range used for analysis.  相似文献   

11.
IntroductionThe aim of this study was to assess the effects of neuromuscular fatigue on stretch reflex-related torque and electromyographic activity of spastic knee extensor muscles in hemiplegic patients. The second aim was to characterize the time course of quadriceps muscle fatigue during repetitive concentric contractions.MethodsEighteen patients performed passive, isometric and concentric isokinetic evaluations before and after a fatigue protocol using an isokinetic dynamometer. Voluntary strength and spasticity were evaluated following the simultaneous recording of torque and electromyographic activity of rectus femoris (RF), vastus lateralis (VL) and biceps femoris (BF).ResultsIsometric knee extension torque and the root mean square (RMS) value of VL decreased in the fatigued state. During the fatigue protocol, the normalized peak torque decreased whereas the RMS of RF and BF increased between the first five and last five contractions. There was a linear decrease in the neuromuscular efficiency-repetitions relationships for RF and VL. The peak resistive torque and the normalized RMS of RF and VL during passive stretching movements were not modified by the fatigue protocol for any stretch velocity.DiscussionThis study showed that localized quadriceps muscle fatigue caused a decrease in voluntary strength which did not modify spasticity intensity. Changes in the distribution of muscle fiber type, with a greater number of slow fibers on the paretic side, may explain why the stretch reflex was not affected by fatigue.  相似文献   

12.
Quadriceps muscle weakness and the underlying neuromuscular deficits have been increasingly studied over the last few years in patients with knee osteoarthritis, but the applied methodologies have never been validated for this specific population. The aim of this study was to investigate test–retest reliability of several quadriceps muscle function outcomes in patients with knee osteoarthritis both before and after knee arthroplasty surgery. Ten preoperative and 20 postoperative patients participated in two identical testing sessions. A series of voluntary and/or electrically stimulated contractions of the involved quadriceps with concomitant torque and electromyographic recordings were used to characterize muscle strength, muscle activation and muscle contraction properties. Vastus lateralis morphology (thickness and fascicle pennation angle) was also assessed using ultrasonography. Overall, good reliability scores were observed for the majority of the 13 assessed variables (nine variables with intraclass correlation coefficients >0.75, 12 variables with coefficients of variation <15%). The most reliable testing protocol for patients with knee osteoarthritis would entail the assessment of (1) isometric maximal voluntary torque for evaluating muscle strength, with (2) simultaneous vastus lateralis electromyographic activity for evaluating muscle activation, (3) potentiated (resting) doublet peak torque for evaluating muscle contractility, and (4) vastus lateralis thickness for evaluating muscle size.  相似文献   

13.
Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.  相似文献   

14.
The effect of an increased angle of excursion and isometric pre-activation on isokinetic torques of knee extensors was investigated in five male subjects, mean age 35.0 years, SD 9.6. Peak torque and isoangular torque at 0.52 rad from full knee extension (FKE) were measured when contractions were carried out at 3.14, 4.19 and 5.24 rad.s-1 starting: 1) from a standard knee angle (SA) of 1.57 rad from FKE, 2) from the same starting angle as SA, plus an isometric preload (P) equivalent to 25% of isometric maximal voluntary contraction and 3) from an increased angle of knee flexion (IA), 2.09 rad from FKE plus P. Surface integrated electromyograms (iEMG) of the vastus lateralis muscle in SA and IA + P were also recorded. The IA + P had the effect of increasing peak torque, as compared to SA, on average by 12.0%, SD 7.5% (P less than 0.001) at 3.14 rad.s-1, 19.5%, SD 5.5% (P less than 0.001) at 4.19 rad.s-1, 21.6%, SD 10.7% (P less than 0.001) at 5.24 rad.s-1 and of increasing mean iEMG by 15.7%, SD 7.0% (P less than 0.001) at 5.24 rad.s-1. The IA + P also had the effect of increasing the angle from FKE at which peak torque occurred: from means of 0.80 rad, SD 0.11 to 1.00 rad, SD 0.07 at 3.14 rad.s-1, from 0.65 rad, SD 0.11 to 0.92 rad, SD 0.09 at 4.19 rad.s-1 and from 0.60 rad, SD 0.11 to 0.88 rad, SD 0.11 at 5.24 rad.s-1 (P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

16.
Skeletal muscle responses to lower limb suspension in humans.   总被引:8,自引:0,他引:8  
Eight subjects participated in a 6-wk unilateral lower limb suspension (ULLS) study to determine the influence of reduced weight bearing on human skeletal muscle morphology. The right shoe was outfitted with a platform sole that prevented the left foot from bearing weight while walking with crutches, yet it allowed freedom of movement about the ankle, knee, and hip. Magnetic resonance images pre- and post-ULLS showed that thigh muscle cross-sectional area (CSA) decreased (P less than 0.05) 12% in the suspended left lower limb, whereas right thigh muscle CSA did not change. Likewise, magnetic resonance images collected post-ULLS showed that muscle CSA was 14% smaller (P less than 0.05) in the left than in the right leg. The decrease in muscle CSA of the thigh was due to a twofold greater response of the knee extensors (-16%, P less than 0.05) than knee flexors (-7%, P less than 0.05). The rectus femoris muscle of the knee extensors showed no change in CSA, whereas the three vastus muscles showed similar decreases of approximately 16% (P less than 0.05). The apparent atrophy in the leg was due mainly to reductions in CSA of the soleus (-17%) and gastrocnemius muscles (-26%). Biopsies of the left vastus lateralis pre- and post-ULLS showed a 14% decrease (P less than 0.05) in average fiber CSA. The decrease was evident in both type I (-12%) and II (-15%) fibers. The number of capillaries surrounding the different fiber types was unchanged after ULLS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of this investigation was to study the relationships among movement velocity, torque output and electromyographic (EMG) activity of the knee extensor muscles under eccentric and concentric loading. Fourteen male subjects performed maximal voluntary eccentric and concentric constant-velocity knee extensions at 45, 90, 180 and 360 degrees.s-1. Myoelectric signals were recorded, using surface electrodes, from the vastus medialis, vastus lateralis and rectus femoris muscles. For comparison, torque and full-wave rectified EMG signals were amplitude-averaged through the central half (30 degrees-70 degrees) of the range of motion. For each test velocity, eccentric torque was greater than concentric torque (range of mean differences: 20%-146%, P less than 0.05). In contrast, EMG activity for all muscles was lower under eccentric loading than velocity-matched concentric loading (7%-31%, P less than 0.05). Neither torque output nor EMG activity for the three muscles changed across eccentric test velocities (P greater than 0.05). While concentric torque increased with decreasing velocity, EMG activity for all muscles decreased with decreasing velocity (P less than 0.05). These data suggest that under certain high-tension loading conditions (especially during eccentric muscle actions), the neural drive to the agonist muscles was reduced, despite maximal voluntary effort. This may protect the musculoskeletal system from an injury that could result if the muscle was to become fully activated under these conditions.  相似文献   

18.
Surface EMG signals detected in dynamic conditions are affected by a number of artefacts. Among them geometrical factors play an important role. During movement the muscle slides with respect to the skin because of the variation of its length. Such a shift can considerably modify sEMG amplitude. The purpose of this work is to assess geometrical artefacts on sEMG during isometric contractions at different muscle lengths.The average rectified value (ARV) of 15 single differential signals was obtained by means of a linear array of 16 bar electrodes from the vastus medialis and lateralis muscles. The knee angle was changed from 75 degrees to 165 degrees in steps of 30 degrees and voluntary isometric contractions at a low, medium and high force level were performed for each angle. The ARV pattern was normalized with respect to the mean activity to compare signals from different joint angles. From the data collected it was possible to separate the geometrical changes from the changes due to different intensities of activation.In three out of five subjects, we found (within the resolution of our measures) a 1 cm shift for the vastus medialis muscle while no shift was observed for the other two subjects. For the vastus lateralis muscle a 1 cm shift was found in two out of four subjects. Such a shift produces the main contribution to geometrical artefacts. To avoid such artefacts the innervation zones should be located and the EMG electrodes should not be placed near them.  相似文献   

19.
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP.  相似文献   

20.
The present study aimed to investigate the effects of repetitive drop jumps (DJ) and isometric leg presses (LP) on the tendon properties in knee extensors. Before and after each endurance test, the elongation (L) of the tendon and aponeurosis of the vastus lateralis muscle was measured directly by ultrasonography while the subjects performed ramp isometric knee extensions up to maximum voluntary isometric contraction. Eight men performed 100 repetitions of the DJ and 50 repetitions of the LP for 10 seconds with 10 seconds relaxation. In the DJ, there were no significant differences in L values at any force production levels before and after each endurance test. In LP, however, the L values above 500 N were significantly greater after the endurance test than before. These results suggest that the tendon properties in knee extensors change to become more compliant after the repeated longer-duration contractions, but not after repeated ballistic exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号