首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In laboratory tests, proliferation increased the susceptibility of lenticels on mature tubers to infection by Erwinia carotovora var. atroseptica. No differences in susceptibility to E. c. atroseptica and Phytophthora infestans were detected on tubers lifted at different stages of growth from soil kept wet or dry for 3 wk prior to each sampling. As tubers aged, fewer lenticels became infected by either pathogen or were penetrated by fluorescein dye, presumably because cells had been suberized and cork barriers formed.  相似文献   

2.
Potato tuber callus: validation as a biochemical tool   总被引:1,自引:0,他引:1       下载免费PDF全文
Shaw R  Varns JL 《Plant physiology》1976,58(4):464-467
Callus was initiated from explants of tubers of the Norchip cultivar of Solanum tuberosum L. and grown on medium with a single carbon source and without addition of coconut milk, protein hydrolysate, or amino acid. Callus samples were harvested at intervals and compared to mature tubers for which there was good biochemical knowledge.  相似文献   

3.
4.
Taxonomy:   Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid , family Pospiviroidae . An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae .
Physical properties:   Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro . Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt.
Hosts and symptoms:   The natural host range of PSTVd—cultivated potato, certain other Solanum spp., and avocado—appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.  相似文献   

5.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   

6.
7.
Colneleic acid (9-[1'(E),3'(Z)-nonadienyloxy]-8(E)-nonenoic acid) is produced from linoleic acid by the sequential action of 9-lipoxygenase and divinyl ether synthase. We demonstrate that a small fraction of the colneleic acid in potato tubers is esterified in phospholipids. This colneleic acid was released by chemical hydrolysis and a phospholipase A(2), but not by a lipase with 1-acyl specificity. Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol contain molecular species with nominal masses consistent with identification as palmitoyl,colneleoyl species. Exact mass analysis of its fragments confirmed the identity of palmitoyl,colneloyl phosphatidylinositol. To our knowledge, this work represents the first identification of a colneleoyl phospholipid.  相似文献   

8.
9.
ADP-glucose pyrophosphorylase catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP-glucose pyrophosphorylase. Crystals of potato tuber ADP-glucose pyrophosphorylase alpha subunit were grown in high concentrations of sulfate, resulting in the sulfate-bound, allosterically inhibited form of the enzyme. The N-terminal catalytic domain resembles a dinucleotide-binding Rossmann fold and the C-terminal domain adopts a left-handed parallel beta helix that is involved in cooperative allosteric regulation and a unique oligomerization. We also report structures of the enzyme in complex with ATP and ADP-glucose. Communication between the regulator-binding sites and the active site is both subtle and complex and involves several distinct regions of the enzyme including the N-terminus, the glucose-1-phosphate-binding site, and the ATP-binding site. These structures provide insights into the mechanism for catalysis and allosteric regulation of the enzyme.  相似文献   

10.
11.
This paper summarizes some structural characteristics of Potato virus X (PVX), the flexuous filamentous plant potexvirus. A model of PVX coat protein (CP) tertiary structure in the virion proposed on the basis of tritium planigraphy combined with predictions of the protein tertiary structure is described. A possible role of glycosylation and phosphorylation in the CP structure and function is discussed. Two forms of PVX virion disassembly are discussed: (i) the virion co-translational disassembly after PVX CP in situ phosphorylation and (ii) disassembly of PVX triggered by different factors after linear destabilization of the virion by binding of the PVX-coded movement protein (TGBp1) to one end of the polar CP-helix. Special emphasis was placed on a translational activation of encapsidated PVX RNA and rapid disassembly of TGBp1-PVX complexes into free RNA and CP. The results of experiments on the PVX CP repolymerization and PVX reconstitution are considered. In particular, the products assembled from PVX RNA, CP and TGBp1 were examined. Single-tailed particles were found with a helical, head-like structure consisting of helically arranged CP subunits located at the 5'-tail of RNA; the TGBp1 was bound to the end of the head. Translatable 'RNA-CP-TGBp1' complexes may represent the transport form of the PVX infection.  相似文献   

12.
Regulation of CDPK isoforms during tuber development   总被引:6,自引:0,他引:6  
CDPK activities present during tuber development were analysed. A high CDPK activity was detected in the soluble fraction of early stolons and a lower one was detected in soluble and particulate fractions of induced stolons. The early and late CDPK activities displayed diverse specificity for in vitro substrates and different subcellular distribution. Western blot analysis revealed two CDPKs of 55 and 60 kDa that follow a precise spatial and temporal profile of expression. The 55 kDa protein was only detected in early-elongating stolons and the 60 kDa one was induced upon stolon swelling, correlating with early and late CDPK activities. A new member of the potato CDPK family, StCDPK3, was identified from a stolon cDNA library. Gene specific RT-PCR demonstrated that this gene is only expressed in early stolons, while the previously identified StCDPK1 is expressed upon stolon swelling. This expression profile suggests that StCDPK3 could correspond to the 55 kDa isoform while StCDPK1 could encode the 60 kDa isoform present in swelling stolons. StCDPK1 has myristoylation and palmitoylation consensus possibly involved in its dual intracellular localization. Transient expression studies with wild-type and mutated forms of StCDPK1 fused to GFP were used to show that subcellular localization of this isoform is controlled by myristoylation and palmitoylation. Altogether, our data suggest that sequential activation of StCDPK3 and StCDPK1 and the subcellular localisation of StCDPK1 might be critical regulatory steps of calcium signalling during potato tuber development.  相似文献   

13.
Molecular and biochemical triggers of potato tuber development.   总被引:16,自引:0,他引:16  
  相似文献   

14.
A crosstalk of auxin and GA during tuber development   总被引:1,自引:0,他引:1  
Several hormones have been studied for their effect on tuber initiation and development. Until recently, the hormone with the most prominent role in tuber initiation was attributed to GA. Genes involved in GA degradation do exhibit an upregulated profile during early stages of tuber development, leading to a rapid decrease of active GA content, thereby facilitating stolon-tip swelling. While GA is known to be involved in shoot and stolon elongation, the development of the new tuberorgan requires changes in meristem identity and the reorientation ofthe plane of cell division. In other developmental processes, such as embryo patterning, flower development and lateral root initiation auxin plays a key role. Recent evidence on the involvement of auxin in tuber formation was providedby the measurement of auxin content in swelling stolons. Auxin content in the stolon tips increased several fold prior to tuber swelling. In vitro tuberisation experiments with auxin applications support the role of auxin during tuber initiation. Taken together, it is becoming clear that the initiation and induction of tubers in potato is a developmental process that appears to be regulated by a crosstalk between GA and auxin.  相似文献   

15.
16.
Gene expression during tuber development in potato plants   总被引:4,自引:0,他引:4  
Potato tubers are modified stems that have differentiated into storage organs. Factors such as day-length, nitrogen supply, and levels of the phytohormones cytokinin and gibberellic acid, are known to control tuberization. Morphological changes during tuber initiation are accompanied by the accumulation of a characteristic set of proteins, thought to be involved in N-storage (i.e. patatin) or defense against microbial or insect attack (i.e. proteinase inhibitor II). Additionally, deposition of large amounts of starch occurs during tuber formation, which is paralleled by an increase in sucrose synthase and other enzymes involved in starch biosynthesis (i.e. ADP-glucose pyrophosphorylase, starch synthases, and branching enzyme). Potential controlling mechanisms for genes expressed during tuberization are discussed.  相似文献   

17.
Two protein extraction procedures were tested in order to remove interfering compounds prior to 2-DE of potato tubers. These methods using SDS lysis buffer and phenol-phase extraction were compared regarding the quality of the resulting 2-D gel. While the resolution of SDS extracts on semipreparative gels seems better, both methods lead to similar extraction yields and total number of spots. The procedures are complementary regarding the Mr range of preferentially extracted proteins.  相似文献   

18.
Superoxide anion regulates plant growth and tuber development of potato   总被引:1,自引:2,他引:1  
Kim MS  Kim HS  Kim YS  Baek KH  Oh HW  Hahn KW  Bae RN  Lee IJ  Joung H  Jeon JH 《Plant cell reports》2007,26(10):1717-1725
A higher concentration of H2O2 was detected in the sense transgenic potato plant (SS4) with the lily chCu,ZnSOD sequence, whereas higher levels of O2 was detected in the antisense transgenic plant (SA1) than the WT plant. The elongation growth in SA1 was significantly inhibited by treatment with diphenyleneiodonium, an inhibitor of O2 generation, and promoted in the SS4 on treatment with herbicide methyl viologen, a generator of apoplastic O2. Higher concentrations of GAs were detected during plant growth and the early stage of tuberization in SA1. Complete recovery of the above elongation growth and microtuberization pattern in transgenic plants following treatment of GA3 or an inhibitor of gibberellin synthesis, paclobutrazol, indicate that these changes were mainly caused by active GA levels. In conclusion, a specific ROS (O2 ) acts as a signal transducer via GA biosynthetic pathways for the regulation of plant growth and tuber development of potato.  相似文献   

19.
The sucrose (Suc) H(+)-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic potato. SUT1 expression was unexpectedly detected not in tuber parenchyma but in the phloem of sink tubers. Immunolocalization demonstrated that StSUT1 protein was present only in sieve elements of sink tubers, cells normally involved in export of Suc from the phloem to supply developing tubers, raising the question of the role of SUT1 in tubers. SUT1 expression was inhibited by antisense in transgenic potato plants using a class I patatin promoter B33, which is primarily expressed in the phloem of developing tubers. Reduced SUT1 expression in tubers did not affect aboveground organs but led to reduced fresh weight accumulation during early stages of tuber development, indicating that in this phase SUT1 plays an important role for sugar transport. Changes in Suc- and starch-modifying enzyme activities and metabolite profiles are consistent with the developmental switch in unloading mechanisms. Altogether, the findings may suggest a role of SUT1 in retrieval of Suc from the apoplasm, thereby regulating the osmotic potential in the extracellular space, or a direct role in phloem unloading acting as a phloem exporter transferring Suc from the sieve elements into the apoplasm.  相似文献   

20.
Treatment of potato tuber tissue with beta-1,3-oligoglucosaccharide causes an accumulation of N-p-coumaroyloctopamine (1). In order to determine the absolute structure of 1 in potato, optically active 1 was synthesized from (R)-octopamine which had been obtained from the racemic mixture by the fractional crystallization. By comparing the chromatographic behavior of synthetic and naturally-occurring samples with a chiral HPLC analysis, the absolute configuration of 1 in potato was determined to be S. This indicates that the absolute configuration of the octopamine moiety of 1 is opposite to that of octopamine formed in animal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号