首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Meyer  G.  Waschkies  C.  Hüttl  R. F. 《Plant and Soil》1999,213(1-2):137-147
The impact of organic waste material and fly ash on microbial and chemical pyrite oxidation was investigated in a field experiment, as well as in column tests under laboratory conditions. For the field experiment, pyritic mine spoil was ameliorated with fly ash and treated either with mineral fertiliser, with sewage sludge or with compost. Independent of treatment, during the 18 months following application, the pyrite-S contents decreased steadily in the top spoil (0–30 cm depth). However, high variations of the pyrite-S content were observed. Compared to other pyrite oxidation studies, the pyrite content of the mine spoil at the experimental site was low. Therefore, a model spoil with a higher pyrite content, derived from Tertiary strata of the overburden sequence in the same open-cast mine, was used for the column experiments. For the first column experiment, the model spoil was mixed with fly ash and mineral fertiliser, reflecting the common reclamation practice in the Lusatian open-cast lignite mining district. Columns with this spoil were either inoculated with different cell numbers of autochthonous acidophilic bacteria, isolated from the model spoil, or with a commercial strain of Thiobacillus ferrooxidans. The ratio of sulphate-S to total S was used as a measure for the degree of pyrite oxidation. The ratio of sulphate-S to total S increased within 28 days of incubation. The increase was related to the inoculated cell numbers of bacteria, but independent of the origin of the bacteria. It can be stated, that autochthonous bacteria from the model spoil oxidised pyrite at a similar rate as did the commercial T. ferrooxidans strain. For the second column test, mineral fertiliser, sewage sludge or compost were applied to the model spoil. The columns were inoculated with autochthonous bacteria, isolated from the model spoil. Application of sewage sludge and compost seemed to promote the weathering of pyrite, as the ratio of sulphate-S to total S increased more rapidly in these treatments compared to control or mineral fertiliser application. Both experiments showed an increase of cell numbers of inoculated bacteria, independent of the ratio of sulphate-S to total S. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, that was not observed in any of the strains examined, including those of Thiobacillus ferrooxidans. The bacteria with this last spacer were selected after culturing in mineral and elemental sulfur media containing 0.7 N sulfuric acid. The spacer and the 16S ribosomal DNA of this isolate were sequenced and compared with those in species commonly found in bioleaching processes. Though the nucleotide sequence of the spacer showed an extensive heterologous region with T. thiooxidans, the sequence of its 16S rDNA gene indicated a close relationship (99.85%) with this species. These results indicate that a population comprised of bacterial strains closely related to T. thiooxidans and of another strain, possibly related to "L. ferrooxidans," can develop during leaching at high sulfuric acid concentration. Iron oxidation in this condition is attributable to "L. ferrooxidans" and not T. ferrooxidans, based on the presence of spacers with the "L. ferrooxidans" size range and the absence of spacers characteristic of T. ferrooxidans.  相似文献   

3.
The potential of a Cu/Ni mining slag to act as a substrate for the growth of the bacteria Thiobacillus ferrooxidans, Thiobacillus thiooxidants, and Thiobacillus thioparus was examined. As well, slag and seepage samples were screened for the presence of the Thiobacillus species. For the 28 samples employed in the environmental recovery studies, T. ferrooxidans was recovered in 25 samples, T. thiooxidans in 19 samples, and T. thioparus in 27 samples. For T. ferrooxidans, the development of a colour change in the medium corresponded with the presence of motile bacilli as detected microscopically. For T. thiooxidans and T. thioparus, a decrease in culture pH of greater than 0.2 units usually corresponded with the presence of motile bacilli. The potential for growth on slag was determined by adding slag samples to media (devoid of an electron donor) appropriate for the growth of the three Thiobacillus species. All pulverized slag samples supported the growth of the three species.  相似文献   

4.
Thiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize Fe2+ or sulphide as energy source. Growth curves for Thiobacillus ferrooxidans have been tested, which show lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Thiobacillus ferrooxidans cultivated with Fe2+ and from 4 to 12 days for Thiobacillus ferrooxidans cultivated with elemental sulphur. Differences of protein patterns of Thiobacillus ferrooxidans growing on elemental sulphur and Fe2+ separately were investigated after cultivation at 30 degrees C by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ ionization (MALDI)-Mass spectrometry and ESI-MS/MS. From the 17 identified protein spots, 11 spots were found more abundant when growing on elemental sulphur. By contrast 6 protein spots were found decreased at elemental cultivation condition. Among the proteins identified, cytochrome C have been previously identified as necessary elements of electron-transferring pathway for Thiobacillus ferrooxidans to oxidize Fe2+; ATP synthase alpha chain and beta are expressed increased when Thiobacillus ferrooxidans cultivated with Fe2+ as energy source. ATP synthase Beta chain is the catalytic subunit, and ATP synthase alpha chain is a regulatory subunit. The function of ATPase produces ATP from ADP in the presence of a proton gradient across the membrane.  相似文献   

5.
采用非稳态法测定FeSO4在包埋和未包埋氧化亚铁硫杆菌的凝胶中的有效扩散系数。结果表明,FeSO4在凝胶中的有效扩散系数De随着海藻酸钠浓度的升高而降低,当海藻酸钠浓度为2%时最优;凝胶剂CaCl2的浓度对扩散系数的影响较小。包埋的氧化亚铁硫杆菌在10h达到增殖平衡,而FeSO4在包埋细菌的凝胶内扩散系数明显减少。  相似文献   

6.
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.  相似文献   

7.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

8.
Phenotypic switching of Thiobacillus ferrooxidans   总被引:6,自引:1,他引:5       下载免费PDF全文
Two solid medium formulations, designated 100:10 and 10:10, were developed for the growth of Thiobacillus ferrooxidans. The new media contain a mixture of both ferrous iron and thiosulfate as available energy sources, permitting the detection of colony morphology variants that arise spontaneously in a wild-type population. Several morphological and physiological characteristics of a class of T. ferrooxidans variants, termed LSC for large spreading colony, are described. LSC variants lack the ability to oxidize iron but retain the capacity to utilize thiosulfate or tetrathionate as energy sources. An LSC colony spreads on the surface of solid 100:10 medium as a monolayer of cells in a fashion resembling that of certain swarming or gliding bacteria. The LSC variant reverts to a parental wild type at frequencies that vary in different independently arising isolates. The identity of the LSC variant as a derivative of the parental wild-type T. ferrooxidans was established by Southern blot hybridization.  相似文献   

9.
A new soluble c-type cytochrome has been purified to homogeneity from the acidophilic proteobacterium Thiobacillus ferrooxidans BRGM. It is characterized by an alpha-peak wavelength of 552 nm, a molecular mass of 26 567 Da (as determined by mass spectroscopy) and a pI value of 8. Optical redox titrations at pH 4.0 revealed the presence of two distinguishable redox species with an E(m) of 510 mV and an E(m) of 430 +/- 20 mV. EPR spectra recorded for this heme protein demonstrated the presence of stoichiometric amounts of two low-spin hemes with a g(z)() of 3.08 (510 mV species) and a g(z)() of 3.22 (430 mV species). Modifications of the physicochemical properties of the cytochrome were observed on complex formation with the blue copper protein rusticyanin, another soluble electron carrier in the genus Thiobacillus. N-Terminal sequencing yielded the polypeptide sequence up to the 50th residue. The determined sequence was found to be present (at 100% amino acid identity) in the (unfinished) genome of T. ferrooxidans ATCC 23270, and the corresponding full-length protein turned out to be surprisingly similar (34.5% amino acid identity) to another c(4)-type diheme protein from T. ferrooxidans BRGM [Cavazza, C., et al. (1996) Eur. J. Biochem. 242, 308-314], the gene of which is also present (at 97% amino acid identity) in the T. ferrooxidans ATCC 23270 genome. The physicochemical properties and sequence characteristics of both c(4) cytochromes present in the same bacteria are compared, and the functional role of this new diheme protein in the iron(II)-oxidizing electron transport chain in the genus Thiobacillus is discussed.  相似文献   

10.
氧化亚铁硫杆菌分离复壮及固定化的研究   总被引:6,自引:0,他引:6  
用稀释涂布平板法从已退化的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)菌液中分离出氧化活性较高、生命力强的氧化亚铁硫杆菌T1。以H2软性填料作为氧化亚铁硫杆菌的固定化载体,构建了固定床生物反应器。考察了固定床生物反应器氧化Fe2+的情况:Fe2+最大氧化速率达7.67g/(L·h)。并对固定床生物反应器运行过程中在载体表面形成的沉淀物进行了研究,通过X衍射证明此沉淀物为黄钾铁矾[Kfe3(SO4)2(OH)6]。  相似文献   

11.
Most copper bioleaching plants operate with a high concentration of sulfate salts caused by the continuous addition of sulfuric acid and the recycling of the leaching solution. Since the bacteria involved in bioleaching have been generally isolated at low sulfate concentrations, the bacterial population in ores leached with the high-sulfate solution (1.25 M) employed in a copper production plant was investigated. The complexity of the original population was assessed by the length pattern of the spacer regions between the 16S and 23S rRNA genes, observed after PCR amplification of the DNA extracted from the leached ore. Six main spacers were distinguished by electrophoretic migration, but they could be further resolved into eight spacers by nucleotide sequence homology. The degree of homology was inferred from the electrophoretic migration of the heteroduplexes formed after hybridization. One of the spacers was indistinguishable from that found in Thiobacillus thiooxidans, four could be related to Thiobacillus ferrooxidans, and three could be related to Leptospirillum ferrooxidans. Only five of the spacers in the original sample could be recovered after culturing in media containing different inorganic energy source. Altogether, the results indicate that the bacteria in the leached ore formed a community composed of at least three species: a fairly homogeneous population of T. thiooxidans strains and two heterogeneous populations of T. ferrooxidans and L. ferrooxidans strains.  相似文献   

12.
A strain of Thiobacillus ferrooxidans was adapted to grow at higher concentrations of copper by single step culturing in the presence of 20 g/L (0.314 mol/L) cupric ions added to 9K medium. Exposure to copper results in change in the surface chemistry of the microorganism. The isoelectric point of the adapted strain (pI=4.7) was observed to be at a higher pH than that of the wild unadapted strain(pI=2.0). Compared to the wild strain, the copper adapted strain was found to be more hydrophobic and showed enhanced attachment efficiency to the pyrite mineral. The copper adsorption ability of the adapted strain was also found to be higher than that of the wild strain. Fourier transform infrared spectroscopy of adapted cells suggested that a proteinaceous new cell surface component is synthesized by the adapted strain. Treatment of adapted cells with proteinase-K, resulted in complete loss of tolerance to copper, reduction in copper adsorption and hydrophobicity of the adapted cells. These observations strongly suggest a role played by cell surface modifications of Thiobacillus ferrooxidans in imparting the copper tolerance to the cells and bioleaching of sulphide minerals.  相似文献   

13.
This study demonstrates the efficacy of a direct 5S rRNA assay for the characterization of mixed microbial populations by using as an example the bacteria associated with acidic mining environments. The direct 5S rRNA assay described herein represents a nonselective, direct molecular method for monitoring and characterizing the predominant, metabolically active members of a microbial population. The foundation of the assay is high-resolution denaturing gradient gel electrophoresis (DGGE), which is used to separate 5S rRNA species extracted from collected biomass. Separation is based on the unique migration behavior of each 5S rRNA species during electrophoresis in denaturing gradient gels. With mixtures of RNA extracted from laboratory cultures, the upper practical limit for detection in the current experimental system has been estimated to be greater than 15 different species. With this method, the resolution was demonstrated to be effective at least to the species level. The strength of this approach was demonstrated by the ability to discriminate between Thiobacillus ferrooxidans ATCC 19859 and Thiobacillus thiooxidans ATCC 8085, two very closely related species. Migration patterns for the 5S rRNA from members of the genus Thiobacillus were readily distinguishable from those of the genera Acidiphilium and Leptospirillum. In conclusion, the 5S rRNA assay represents a powerful method by which the structure of a microbial population within acidic environments can be assessed.  相似文献   

14.
Thiobacillus ferrooxidans, a facultative hydrogen oxidizer   总被引:1,自引:0,他引:1  
The type strain (ATCC 23270) and two other strains of Thiobacillus ferrooxidans were able to grow by hydrogen oxidation, a feature not recognized before. When cultivated on H2, a hydrogenase was induced and the strains were less extremely acidophilic than during growth on sulfidic ores. Cells of T. ferrooxidans grown on H2 and on ferrous iron showed 100% DNA homology. Hydrogen oxidation was not observed in eight other species of the genus Thiobacillus and in Leptospirillum ferrooxidans.  相似文献   

15.
Thiobacillus ferrooxidans, a facultative hydrogen oxidizer.   总被引:4,自引:2,他引:4       下载免费PDF全文
The type strain (ATCC 23270) and two other strains of Thiobacillus ferrooxidans were able to grow by hydrogen oxidation, a feature not recognized before. When cultivated on H2, a hydrogenase was induced and the strains were less extremely acidophilic than during growth on sulfidic ores. Cells of T. ferrooxidans grown on H2 and on ferrous iron showed 100% DNA homology. Hydrogen oxidation was not observed in eight other species of the genus Thiobacillus and in Leptospirillum ferrooxidans.  相似文献   

16.
Cell-free mercury volatilization activity (mercuric reductase) was obtained from a mercury-volatilizing Thiobacillus ferrooxidans strain, and the properties of intact-cell and cell-free activities were compared with those determined by plasmid R100 in Escherichia coli. Intact cells of T. ferrooxidans volatilized mercury at pH 2.5, whereas cells of E. coli did not. Cell-free enzyme preparations from both bacteria functioned best at or above neutral pH and not at all at pH 2.5. The T. ferrooxidans mercuric reductase was a soluble enzyme that was dependent upon added NAD(P)H. The enzyme activity was stable at 80 degrees C, required an added thiol compound, and was stimulated by EDTA. Antisera against purified mercuric reductases from transposon Tn501 and plasmid R831 (which inactivated mercuric reductases from a wide range of enteric and pseudomonad strains) did not inactivate the enzyme from T. ferrooxidans.  相似文献   

17.
In this study, we demonstrated that the period of logarithmic growth for Thiobacillus ferrooxidans could be extended when optimal conditions for cell growth were maintained using potential controlled electrochemical cultivation with sufficient aeration. The optimal pH and Fe(II) concentration for the electrolytic cultivation were determined to be 2.0 and 150 mM, respectively. When the potential was set to 0.0V vs Ag/AgCl, the Pt electrode reduced Fe(III) to Fe(II) with an efficiency of 95%. A porous glass microbubble generator was used to maintain adequate levels of dissolved oxygen, which was the electron acceptor for T. ferrooxidans when the cell density in the medium was high. Under these conditions, cells at an initial density of 10(7) cells/mL grew logarithmically for 4days until the cell density was 4 x 10(9) cells/mL. This corresponded to a period of logarithmic growth that was 3 times longer than was observed in batch cultures without electrolysis. In addition, the final cell density reached 10(10) cells/mL after 6 days of electrochemical cultivation, which was a 50-fold increase over conventional batch culture. Under conditions of increasing cell density, potentiostatic electrolysis made it possible to remove Fe(III), which causes product inhibition, at an increasing rate and to correspondingly increase the production rate of Fe(II), which is the electron donor for T. ferrooxidans. Thus, our cultivation system provides a sufficient supply of electron donor and acceptor for T. ferrooxidans, thereby elongating the period of logarithmic growth and producing very high cell densities.  相似文献   

18.
Lazaroff, Norman (British Columbia Research Council, Vancouver, B.C., Canada). Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. J. Bacteriol. 85:78-83. 1963.-The growth of Thiobacillus ferrooxidans is initially inhibited in media containing ferrous chloride in place of ferrous sulfate. This inhibition of growth is due to the requirement of a high relative proportion of sulfate ions to chloride (or other anions) for iron oxidation. Adaptation takes place, producing strains which are able to oxidize iron in media containing an initially unfavorable anionic composition. Adaptation is possibly due to the selection of spontaneous mutants capable of oxidizing iron in high chloride, low sulfate media. Such cells are found at a frequency of 10(-5) of the population of unadapted cultures.  相似文献   

19.
It was observed that about 90% of free-swimming Thiobacillus ferrooxidans in 9 K medium was adsorbed on added activated carbon when the concentration of the cultivated bacteria reached about 4 x 10(13) cells m(-3). The oxidation of ferrous iron and the leaching of copper ore were carried out in shake flasks and in aerated columns. The rates of oxidation and leaching increased when bacteria adsorbed on activated carbon were used. However, the evaluation of the reaction rates by eliminating the catalytic effect of activated carbon showed that the contribution to the reaction by the adsorbed microorganism was very small.  相似文献   

20.
The composition of bacterial populations in copper bioleaching systems was investigated by analysis of DNA obtained either directly from ores or leaching solutions or after laboratory cultures. This analysis consisted of the characterization of the spacer regions between the 16 and 23S genes in the bacterial rRNA genetic loci after PCR amplification. The sizes of the spacer regions, amplified from DNAs obtained from samples, were compared with the sizes of those obtained from cultures of the main bacterial species isolated from bioleaching systems. This allowed a preliminary assessment of the bacterial species present in the samples. Identification of the bacteria was achieved by partial sequencing of the 16S rRNA genes adjacent to the spacer regions. The spacer regions observed in DNA from columns leached at different iron concentrations indicated the presence of a mixture of different bacteria. The spacer region corresponding to Thiobacillus ferrooxidans was the main product observed at high ferrous iron concentration. At low ferrous iron concentration, spacer regions of different lengths, corresponding to Thiobacillus thiooxidans and "Leptospirillum ferrooxidans" were observed. However, T. ferrooxidans appeared to predominate after culture of these samples in medium containing ferrous iron as energy source. Although some of these strains contained singular spacer regions, they belonged within previously described groups of T. ferrooxidans according to the nucleotide sequence of the neighbor 16S rRNA. These results illustrate the bacterial diversity in bioleaching systems and the selective pressure generated by different growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号