首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have performed a systematic investigation of the structural features of the peptides Int (a sequence able to cross cell membranes) and Int-H1(S6A,F8A) (which shows interesting antitumoral properties). After screening in aqueous solution at different ionic strength and pH values, we analyzed the structures of the peptides in different water/trifluoroethanol mixtures by Circular Dichroism and Nuclear Magnetic Resonance techniques.  相似文献   

2.
The kinetics for the binding of coenzymes to H4 and M4 lactate dehydrogenase from chicken were investigated by nuclear magnetic resonance spectroscopy. With detailed computer analysis, some kinetic parameters were extracted from the chemical shifts and the linewidth of the observed coenzyme resonances at various enzyme/coenzyme ratios and temperatures. The results of the analysis indicated that the dissociation rates of coenzymes from the enzyme/coenzyme complexes are slower with the H4 isozyme than those involving the M4 isozyme. The lifetimes for the NAD+-enzyme complexes are on the order of 1 msec while those for the NADH-enzyme complexes are on the order of 10 ms (at room temperature). Much shorter transverse relaxation times of the coenzyme resonances were observed in NADH-enzyme complexes than those in the NAD+-enzyme complexes. The calculated kinetic constants are in good agreement with the previous studies by stopped-flow and temperature jump methods. A generalized NMR kinetic treatment for the binding of small molecules to a macromolecule is presented.  相似文献   

3.
Structural proteomics is one of the powerful research areas in the postgenomic era, elucidating structure-function relationships of uncharacterized gene products based on the 3D protein structure. It proposes biochemical and cellular functions of unannotated proteins and thereby identifies potential drug design and protein engineering targets. Recently, a number of pioneering groups in structural proteomics research have achieved proof of structural proteomic theory by predicting the 3D structures of hypothetical proteins that successfully identified the biological functions of those proteins. The pioneering groups made use of a number of techniques, including NMR spectroscopy, which has been applied successfully to structural proteomics studies over the past 10 years. In addition, advances in hardware design, data acquisition methods, sample preparation and automation of data analysis have been developed and successfully applied to high-throughput structure determination techniques. These efforts ensure that NMR spectroscopy will become an important methodology for performing structural proteomics research on a genomic scale. NMR-based structural proteomics together with x-ray crystallography will provide a comprehensive structural database to predict the basic biological functions of hypothetical proteins identified by the genome projects.  相似文献   

4.
Y Shiro  I Morishima 《Biochemistry》1986,25(20):5844-5849
The heme environmental structures of lactoperoxidase (LP) have been studied by the use of hyperfine-shifted proton NMR and optical absorption spectra. The NMR spectra of the enzyme in native and cyanide forms in H2O indicated that the fifth ligand of the heme iron is the histidyl imidazole with an anionic character and that the sixth coordination site is possibly vacant. These structural characteristics are quite similar to those of horseradish peroxidase (HRP), suggesting that these may be prerequisite to peroxidase activity. The pH dependences of the spectra of LP in cyanide and azide forms showed the presence of two ionizable groups with pK values of 6 and 7.4 in the heme vicinity, which is consistent with the kinetic results. The group with pK = 7.4 is associated with azide binding to LP in a slow NMR exchange limit, which is in contrast to the fast entry of azide to HRP.  相似文献   

5.
Mapping protein-protein interactions in solution by NMR spectroscopy.   总被引:10,自引:0,他引:10  
NMR is very well suited to the study of especially weak protein-protein interactions, as no crystallization is required. The available NMR methods to this end are reviewed and illustrated with applications from the recent biochemical literature: intermolecular NOEs, cross-saturation, chemical shift perturbation, dynamics and exchange perturbation, paramagnetic methods, and dipolar orientation. Most of these methods are now routinely applied for complexes with total molecular mass of 60 kDa and can likely be applied to systems up to 1000 kDa. A substantial fraction of complexes studied show distinct effects of induced fit affecting structural and dynamical properties beyond the contact interface.  相似文献   

6.
The structure of naturally occurring galactomannans was characterized by high resolution NMR spectroscopy involving two-dimensional (2D) NMR measurements of the field gradient DQF-COSY, HMQC, HMBC, and ROESY experiments. Four galactomannans with different proportions of galactose (G) and mannose (M), from fenugreek gum (FG), guar gum (GG), tara gum (TG), and locust bean gum (LG), were investigated. Because these galactomannans had very high molecular weights, hydrolysis by dilute H2SO4 was carried out to give the corresponding low molecular weight galactomannans, the structural identities of which were established by comparison of the specific rotations, shape of the GPC profiles, and NMR spectra with those of higher molecular weight galactomannans. The correlation signals GH1-GC4, -GC5, and -MC6 in HMBC and GH1-GH6 in ROESY spectra of FG showed that more than two galactopyranose units with the 1 → 4 linkage were connected at C6 of the mannopyranose main chain. The coupling constant (JH1,2) of galactose was 3.4 Hz, indicating that galactose has an α-linkage. The main chain mannose was found to connect through the 1 → 4 linkage, because of the appearance of the correlation signals MH1-MC4, and MC1-MH4 in the HMBC spectrum due to the long-range correlation signals between two neighboring mannopyranose residues through the M4-O-M1 bond. Although the main chain mannose JH1,2 was not observed, probably because of the high molecular weight, the specific rotation of LG with a higher proportion of mannose was low, [α]D25 = +10.8°, compared with that of FG with a lower proportion of mannose, [α]D25 = +90.5°, suggesting that the mannose in the main chain had a α-linkage. These results suggest that the galactomannans comprise a (1 → 4)-β-mannopyranosidic main chain connected with more than two (1 → 4)-α-galactopyranosidic side chains, in addition to the single galactopyranose side chain, at C6 of the mannopyranose main chain.  相似文献   

7.
8.
Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal–protein and protein–protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein–protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

9.
Weak protein-protein interactions (PPIs) are fundamental to many cellular processes, such as reversible cell-cell contact, rapid enzyme turnover and transient assembly and/or reassembly of large signaling complexes. However, structural and functional characterizations of weak PPIs have been technically challenging and lagged behind those for strong PPIs. Here, we describe nuclear magnetic resonance (NMR) spectroscopy as a highly effective tool for unraveling the atomic details of weak PPIs. We highlight the recent advances of how NMR can be used to rapidly detect and structurally determine extremely weak PPIs (K(d)>10(-4)M). Coupled with functional approaches, NMR has the potential to look into a wide variety of biologically important weak PPIs at the detailed molecular level, thereby facilitating a thorough view of how proteins function in living cells.  相似文献   

10.
The dynamics and conformation of the peptide antigen MHKDFLEKIGGL bound to the Fab' fragment of the monoclonal antipeptide antibody B13A2, raised against a peptide from myohemerythrin, have been investigated by isotope-edited NMR techniques. The peptides were labeled with 15N (98%) or 13C (99%) at the backbone of individual amino acid residues. Well-resolved amide proton and nitrogen backbone resonances were obtained and assigned for eight of the 12 residues of this bound peptide. Significant resonance line width and chemical shift differences were observed. The 15N and 1H line width variations are attributed to differential backbone mobilities among the bound peptide residues which are consistent with the previously mapped epitope of this peptide antigen. Local structural information was obtained from isotope-directed NOE studies. The approximate distances associated with the experimental NOEs were estimated on the basis of a theoretical NOE analysis involving the relative integrated intensities of the NOE and source peaks. In this way, the sequential NH-NH NOEs obtained for seven of the Fab'-bound peptide residues were shown to correspond to interproton separations of approximately 3 A or less. Such short distances indicate that the backbone dihedral angles of these residues are in the alpha rather than the beta region of phi,psi conformational space; the peptide most likely adopts a helical conformation from F5 to G11 within the antibody combining site. The significance of these results with respect to the type and extent of conformational information obtainable from studies of high molecular weight systems is discussed.  相似文献   

11.
PMAP-23 is a cathelicidin-derived antimicrobial peptide identified from porcine leukocytes. PMAP-23 was reported to show potent antimicrobial activity against Gram-negative and Gram-positive bacteria without hemolytic activity. To study the structure-antibiotic activity relationships of PMAP-23, two analogues by replacing Trp with Ala were synthesized and their tertiary structures bound to DPC micelles have been studied by NMR spectroscopy. PMAP-23 has two alpha-helices, one from Arg1 to Arg10 in the N-terminal region and the other from Phe18 to Arg23 in the C-terminal region. PMAP-1 (Trp(7)-->Ala) shows similar structure to PMAP-23, while PMAP-2 (Trp(21)-->Ala) has a random structure in the C-terminus. PMAP-2 was found to show less antibacterial and vesicle-disrupting activities than PMAP-23 and PMAP-1 [J. H. Kang, S. Y. Shin, S. Y. Jang, K. L. Kim, and K.-S. Hahm (1999) Biochem. Biophys. Res. Commun. 264, 281-286]. Trp(21) in PMAP-23 which induces an alpha-helical structure in the second alpha-helix is essential for the antibacterial activity of PMAP-23. Also, the fluorescence data proved that Trp(21) at the second alpha-helix is buried deep into the phospholipid in the membrane. Therefore, it implies that Trp(21) in the second alpha-helix at the C-terminus of PMAP-23 may play an important role on the interactions with the membrane and the flexible region including two proline residues may allow this alpha-helix to span the lipid bilayer.  相似文献   

12.
Binding of the heterodimeric glycoprotein hormone, chorionic gonadotropin (CG), occurs to the heptahelical LH receptor N-terminal ectodomain (ECD), a large portion of which has been modeled as a leucine-rich repeat protein. In this study, we expressed and purified three single chain N-CG-ECD-C complexes, one comprising the full-length ECD, 1-341 (encoded by exons 1-10 and a portion of 11), and two C-terminal ECD deletion fragments, 1-294 (encoded by exons 1-10) and 1-180 (encoded by exons 1-7). The fusion proteins, including yoked CG (N-beta-alpha-C), were characterized by Western blot analysis and circular dichroism (CD). Analysis of the CD spectra obtained on the CG-ECD fusion proteins, and of the difference spectrum of each after subtracting the CG contribution, yielded secondary structures consistent with a repeating beta-strand/alpha-helix fold as predicted in the homology model. A marked decrease in helicity was observed when the C-terminal 47 amino acid residues were removed from the ECD. Removal of an additional 114 residues, i.e. the region encoded by exons 8-10, results in the loss of fewer helical residues. These results suggest that the hinge region of the ECD, predicted to contain only limited secondary structure, interacts with and stabilizes the ligand-occupied N-terminal portion. Furthermore, the results support a repeating fold, consistent with the proposed model for the LHR ECD.  相似文献   

13.
Araç D  Murphy T  Rizo J 《Biochemistry》2003,42(10):2774-2780
Two methods for detecting protein-protein interactions in solution using one-dimensional (1D) NMR spectroscopy are described. Both methods rely on measurement of the intensity of the strongest methyl resonance (SMR), which for most proteins is observed at 0.8-0.9 ppm. The severe resonance overlap in this region facilitates detection of the SMR at low micromolar and even sub-micromolar protein concentrations. A decreased SMR intensity in the 1H NMR spectrum of a protein mixture compared to the added SMR intensities of the isolated proteins reports that the proteins interact (SMR method). Decreased SMR intensities in 1D 13C-edited 1H NMR spectra of 13C-labeled proteins upon addition of unlabeled proteins or macromolecules also demonstrate binding (SMRC method). Analysis of the interaction between XIAP and Smac, two proteins involved in apoptosis, illustrates both methods. A study showing that phospholipids compete with the neuronal core complex for Ca2+-dependent binding to the presynaptic Ca2+-sensor synaptotagmin 1 illustrates the usefulness of the SMRC method in studying multicomponent systems.  相似文献   

14.
With an increasing number of new chemical entities entering clinical studies, and an increasing share of the market, peptides and peptidomimetics constitute one of the most promising classes of therapeutics. The success of synthetic peptides as therapeutics relies on the lead optimization step in which the lead candidates are modified to improve drug‐like properties of peptides related to potency, pharmacokinetics, solubility, and stability, among others. Peptidomimetics based on the N‐terminal stretch of the first 11 amino acids of the PTH have been investigated as potential lead compounds for the treatment of osteoporosis. On the basis of a peptide reported in the literature, referred to here as the Parent Peptide (H‐Aib‐Val‐Aib‐Glu‐Ile‐Gln‐Leu‐Nle‐His‐Gln‐Har‐NH2), we conducted systematic SAR analyses to investigate the effects of altering peptide hydrophobicity on PTH receptor functional potency as measured by the cAMP (cyclic adenosine monophosphate) accumulation and β‐arrestin recruitment assays. Among hydrophobic residues, we found that the Val2 position shows the least flexibility in terms of the SAR studies, whereas the Leu7 position appeared to be most flexible. Through circular dichroism and nuclear magnetic resonance spectroscopy studies, we were able to establish that changes in hydrophobic residues significantly change the extent of peptide helicity and that the helical character correlates well with receptor agonist activity. Here, we report several novel PTH 1–11 peptidomimetics that show comparable or enhanced potency to stimulate Gs‐signaling over β‐arrestin recruitment as compared with such properties of PTH 1–34 and the Parent Peptide. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Near-infrared (n.i.r.) spectroscopy of carbohydrates in solvents of different proton-acceptor strengths shows splittings in the first-overtone, OH absorptions that are characteristic of a double minimum in the hydrogen-bond, potential-energy curve. On the basis of their specific, n.i.r. absorption maxima in methyl sulfoxide, N,N-dimethylformamide, and 19:1 HCONMe2-water, α-D-glucose, β-D-glucose, and glycogen can be differentiated from each other. These carbohydrates also exhibit previously undefined absorption maxima that are assigned as nonsolvent, hydrogen-bonded OH groups, and the intensity of these bands decreases as the hydrogen-bonding strength of the solvent (Me2SO☆19:1 HCONMe2-water☆HCONMe2) increases. A n.i.r. method for determination of the thermodynamic parameters of hydrogen bonding for cyclohexanol, α-D-glucose, and glycogen in hydrogen-bonding solvents has been designed on the basis of nonsolvent and solvent hydrogen-bonded species at various temperatures.  相似文献   

16.
Two-dimensional (2D) 1H-NMR spectra of porcine-brain natriuretic peptide (pBNP) have been recorded at 300 MHz and 400 MHz. Peak assignments have been made and the combined information from chemical shifts, coupling constants, temperature coefficients and NOEs have been used to determine the conformational properties of pBNP in (C2H3)2SO. Overall the peptide appears to be flexible, with the possibility of some beta-type structure near the C terminus. Some of the assignments and deduced structural features in the current study differ from those in a recent report by Inooka et al. [Inooka, H., Kikuchi, T., Endo, S., Ishibashi, Y., Wakimasu, M. and Mizuta, E. (1990) Eur. J. Biochem. 193, 127-134] which may indicate the sensitivity of the structure of this peptide to differences in solution conditions.  相似文献   

17.
Thyroid hormone (TH) actions are mediated by nuclear receptors (TRs alpha and beta) that bind triiodothyronine (T(3), 3,5,3'-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T(4), 3,5,3',5'-tetraiodo-l-thyronine) with lower affinity. T(4) contains a bulky 5' iodine group absent from T(3). Because T(3) is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5' substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T(4) affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T(4) complexes adopt a conformation that differs from TR-T(3) complexes in solution. Nonetheless, T(4) behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T(3) does not contribute to agonist activity. We determined x-ray crystal structures of the TRbeta LBD in complex with T(3) and T(4) at 2.5-A and 3.1-A resolution. Comparison of the structures reveals that TRbeta accommodates T(4) through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5' iodine and complete the coactivator binding surface. While T(3) is the major active TH, our results suggest that T(4) could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5' extension should be considered in TR ligand design.  相似文献   

18.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.  相似文献   

19.
In influenza, the envelope protein hemagglutinin (HA) plays a critical role in viral entry by first binding to sialic acid receptors on the cell surface and subsequently mediating fusion of the viral and target membranes. In this work, the receptor binding properties of influenza A HA from different subtypes (H1 A/California/04/09, H5 A/Vietnam/1205/04, H5 A/bar-headed goose/Qinghai/1A/05, and H9 A/Hong Kong/1073/99) have been characterized by NMR spectroscopy. Using saturation transfer difference (STD) NMR, we find that all HAs bind to the receptor analogs 2,3-sialyllactose and 2,6-sialyllactose, with subtle differences in the binding mode. Using competition STD NMR, we determine the receptor preferences for the HA subtypes. We find that H5-Qinghai and H9-Hong Kong HA bind to both receptor analogs with similar affinity. On the other hand, H1 exhibits a clear preference for 2,6-sialyllactose while H5-Vietnam exhibits a clear preference for 2,3-sialyllactose. Together, these results are interpreted within the context of differences in both the amino acid sequence and structures of HA from the different subtypes in determining receptor preference.  相似文献   

20.
The complete assignment of the 1H and 13C NMR spectra of bendaline (BNDL) was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. The interaction between bendaline and albumin was also studied by the analysis of the motional parameters spin-lattice relaxation times, allowing the motional state of the BNDL free and bound with albumin to be defined. In absence of albumin the indazolacetic and benzylic moieties are characterized by roughly the same mobility and by positive sigma (cross-relaxation rates) values. In the presence of the macromolecule, the indazolacetic and benzylic moieties and the lysine change their motional behaviour to different extents, as indicated by correlation times. Data obtained in absence and in presence of the protein show that the molecular moiety of the bendaline most involved in the binding with albumin is the fragment H-4 H-5. The binding constant was evaluated at 2.4x10(3)M(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号