首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Nitrophenyl glycosides of 2-, 3-, and 5-O-(E)-feruloyl- and 2- and 5-O-acetyl-alpha-L-arabinofuranosides and of 2-, 3-, and 4-O-(E)-feruloyl- and 2-, 3- and 4-O-acetyl-beta-D-xylopyranosides, compounds mimicking natural substrates, were used to investigate substrate and positional specificity of type-A, -B, and -C feruloyl esterases. All the feruloyl esterases behave as true feruloyl esterases showing negligible activity on sugar acetates. Type-A enzymes, represented by AnFaeA from Aspergillus niger and FoFaeII from Fusarium oxysporum, are specialized for deferuloylation of primary hydroxyl groups, with a very strong preference for hydrolyzing 5-O-feruloyl-alpha-L-arabinofuranoside. On the contrary, type-B and -C feruloyl esterases, represented by FoFaeI from F. oxysporum and TsFaeC from Talaromyces stipitatus, acted on almost all ferulates with exception of 4- and 3-O-feruloyl-beta-D-xylopyranoside. 5-O-Feruloyl-alpha-L-arabinofuranoside was the best substrate for both TsFaeC and FoFaeI, although catalytic efficiency of the latter enzyme toward 2-O-feruloyl-alpha-L-arabinofuranoside was comparable. In comparison with acetates, the corresponding ferulates served as poor substrates for the carbohydrate esterase family 1 feruloyl esterase from Aspergillus oryzae. The enzyme hydrolyzed all alpha-L-arabinofuranoside and beta-D-xylopyranoside acetates. It behaved as a non-specific acetyl esterase rather than a feruloyl esterase, with a preference for 2-O-acetyl-beta-D-xylopyranoside.  相似文献   

2.
The active sites of feruloyl esterases from mesophilic and thermophilic sources were probed using methyl esters of phenylalkanoic acids. Only 13 out of 26 substrates tested were significant substrates for all the enzymes. Lengthening or shortening the aliphatic side chain while maintaining the same aromatic substitutions completely abolished activity for both enzymes, which demonstrates the importance of the correct distance between the aromatic group and the ester bond. Maintaining the phenylpropanoate structure but altering the substitutions of the aromatic ring demonstrated that the type-A esterase from the mesophilic fungus Fusarium oxysporum (FoFaeA) showed a preference for methoxylated substrates, in contrast to the type-B esterase from the same source (FoFaeB) and the thermophilic type-B (StFaeB) and type-C (StFaeC) from Sporotrichum thermophile, which preferred hydroxylated substrates. All four esterases hydrolyzed short chain aliphatic acid (C2-C4) esters of p-nitrophenol, but not the C12 ester of laurate. All the feruloyl esterases were able to release ferulic acid from the plant cell wall material in conjunction with a xylanase, but only the type-A esterase FoFaeA was effective in releasing the 5,5' form of diferulic acid. The thermophilic type-B esterase had a lower catalytic efficiency than its mesophilic counterpart, but released more ferulic acid from plant cell walls.  相似文献   

3.
The lignocellulolytic fungus Aureobasidium pullulans NRRL Y 2311-1 produces feruloyl esterase activity when grown on birchwood xylan. Feruloyl esterase was purified from culture supernatant by ultrafiltration and anion-exchange, hydrophobic interaction, and gel filtration chromatography. The pure enzyme is a monomer with an estimated molecular mass of 210 kDa in both native and denatured forms and has an apparent degree of glycosylation of 48%. The enzyme has a pI of 6.5, and maximum activity is observed at pH 6.7 and 60 degrees C. Specific activities for methyl ferulate, methyl p-coumarate, methyl sinapate, and methyl caffeate are 21.6, 35.3, 12.9, and 30.4 micro mol/min/mg, respectively. The pure feruloyl esterase transforms both 2-O and 5-O arabinofuranosidase-linked ferulate equally well and also shows high activity on the substrates 4-O-trans-feruloyl-xylopyranoside, O-[5-O-[(E)-feruloyl]-alpha-L-arabinofuranosyl]-(1,3)-O-beta-D-xylopyranosyl-(1,4)-D-xylopyranose, and p-nitrophenyl-acetate but reveals only low activity on p-nitrophenyl-butyrate. The catalytic efficiency (k(cat)/K(m)) of the enzyme was highest on methyl p-coumarate of all the substrates tested. Sequencing revealed the following eight N-terminal amino acids: AVYTLDGD.  相似文献   

4.
5.
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water.  相似文献   

6.
A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes. The amino acid sequence lengths of the seven FAE encoding open reading frames (ORFs) ranged from 260 to 274 aa and encoded polypeptides of between 28.9 and 31.4 kDa. The highest sequence identity scores for the seven ORFs against the GenBank database were between 45 and 59 % to a number of carboxyl ester hydrolyses. The seven FAE primary structures contained sequence motifs that correspond well with a classical pentapeptide (G-x-S-x-G) serine hydrolyse signature motif which harbours the catalytic serine residue in other FAE families. Six of the seven fae genes were successfully expressed heterologously in Escherichia coli, and the purified enzymes exhibited temperature optima range of 40–70 °C and the pH optima of between 6.5 and 8.0. The k cat/K M ratios for the six characterised FAEs showed the following order of substrate preference: methyl sinapate?>?methyl ferulate?>?ethyl ferulate. All six FAEs showed poor conversion rates against methyl p-coumarate and methyl caffeate, both of which lacked the methoxy (O–CH3) group substituent on the aromatic ring of the ester substrates, emphasising the requirement for at least one methoxy group on the aromatic ring of the hydroxycinnamic acid ester substrate for optimal FAE activity.  相似文献   

7.
Extracellular esterase production by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger was determined in both liquid and solid-state culture. Methyl ferulate was used as the main carbon source in liquid culture whereas wheat bran and sugar beet pulp were used in solid-state culture. Extracted enzyme for each fungus showed activity in the presence of ONP butyrate, methyl ferulate, methyl coumarate and two 'natural'feruloylated carbohydrate esters. Higher enzyme recoveries were obtained using wheat bran in solid-state culture. Higher levels of feruloyl esterase activity were recovered from P. expansum on all feruloylated substrates than from P. brevicompactum or A. niger. Using ONP butyrate as substrate the pH and temperature optima for the esterases of both Penicillium spp. were 6.0 and 25–30°C. Aspergillus niger esterase activity showed a broader temperature range with an optimum at 40°C.  相似文献   

8.
9.
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.  相似文献   

10.
Investigating the secretion of esterases by the basidiomycetous fungus Pleurotus sapidus in a Tween 80-rich nutrient medium, an enzyme was discovered that hydrolyzed the ester bond of feruloylated saccharides. The enzyme was purified by ion exchange and size exclusion chromatography. Polyacrylamide gel electrophoresis analysis showed a monomeric protein of about 55 kDa. The complete coding sequence with an open reading frame of 1,665 bp encoded a protein (Est1) consisting of 554 amino acids. The enzyme showed no significant homology to any published feruloyl esterase sequences, but possessed putative conserved domains of the lipase/esterase superfamily. Substrate specificity studies classified the new enzyme as type-A feruloyl esterase, hydrolyzing methyl ferulate, methyl sinapate, and methyl p-coumarate but no methyl caffeate. The enzyme had a pH optimum of 6 and a temperature optimum at 50 °C. Ferulic acid was efficiently released from ferulated saccharides, and the feruloyl esterase exhibited moderate stability in biphasic systems (50 % toluene or tert-butylmethyl ether).  相似文献   

11.
Feruloyl esterases hydrolyse phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening the cell wall structure making material more accessible to glycoside hydrolases. Here we describe the crystal structure of inactive S133A mutant of type-A feruloyl esterase from Aspergillus niger (AnFaeA) in complex with a feruloylated trisaccharide substrate. Only the ferulic acid moiety of the substrate is visible in the electron density map, showing interactions through its OH and OCH(3) groups with the hydroxyl groups of Tyr80. The importance of aromatic and polar residues in the activity of AnFaeA was also evaluated using site-directed mutagenesis. Four mutant proteins were heterologously expressed in Pichia pastoris, and their kinetic properties determined against methyl esters of ferulic, sinapic, caffeic and p-coumaric acid. The k(cat) of Y80S, Y80V, W260S and W260V was drastically reduced compared to that of the wild-type enzyme. However, the replacement of Tyr80 and Trp260 with smaller residues broadened the substrate specificity of the enzyme, allowing the hydrolysis of methyl caffeate. The role of Tyr80 and Trp260 in AnFaeA are discussed in light of the three-dimensional structure.  相似文献   

12.
Several extracellular feruloyl esterases were produced by the mesophilic fungus Talaromyces stipitatus when grown on selective carbon sources in liquid media. Type-A and Type-B feruloyl esterases, as defined by their substrate specificity against methyl hydroxycinnamates, were produced during growth on wheat bran and sugar beet pulp, respectively. In addition, Tal. stipitatus produced a new type of esterase (TsFaeC) during growth on sugar beet pulp with a broader spectrum of activity (Type-C) against the (hydroxy)cinnamate esters than those previously described. All three enzymes were purified and N-terminal amino acid sequences and internal peptide sequences determined. The TsFaeC sequences were used to amplify a gene fragment from Tal. stipitatus genomic DNA. The flanking sequences were identified with the aid of RACE-RTPCR, and a full-length clone constructed. The faeC gene is present as a single copy and contains a single intron. The complete cDNA fragment contains an ORF of 1590bp, faeC, which is predicted to encode a 530 amino acid pre-protein, including a 25-residue signal peptide, and to produce a mature protein of M(R) 55 340Da. There was no evidence for a carbohydrate-binding domain in TsFaeC.  相似文献   

13.
Feruloyl esterases act as accessory enzymes for the complete saccharification of plant cell wall hemicelluloses. Although many fungal feruloyl esterases have been purified and characterized, few bacterial phenolic acid esterases have been characterized. This study shows the extracellular production of a feruloyl esterase by the thermophilic anaerobe Clostridium stercorarium when grown on birchwood xylan. The feruloyl esterase was purified 500-fold in successive steps involving ultrafiltration, preparative isoelectric focusing and column chromatography by anion exchange, gel filtration and hydrophobic interaction. The purified enzyme released ferulic, rho-coumaric, caffeic and sinapinic acid from the respective methyl esters. The purified enzyme also released ferulic acid from a de-starched wheat bran preparation. At pH 8.0 and 65 degrees C, the Km and Vmax values for the hydrolysis of methyl ferulate were 0.04 mmol l-l and 131 micromol min-1 mg-1, respectively; the respective values for methyl coumarate were 0.86 mmol l-l and 18 micromol min-1 mg-1. The purified feruloyl esterase had an apparent mass of 33 kDa under denaturing conditions and showed optimum activity at pH 8.0 and 65 degrees C. At a concentration of 5 mmol l-l, the ions Ca2+, Cu2+, Co2+ and Mn2+ reduced the activity by 70-80%.  相似文献   

14.
A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification.  相似文献   

15.
We have developed a spectrophotometric assay for the quantitative determination of feruloyl esterase activity based on release of 4-nitrophenol from a novel substrate, 4-nitrophenyl ferulate in an emulsion of Triton X-100 in aqueous buffer solution. The release of 4-nitrophenol was linear with reaction time at an early stage of the reaction with various esterase preparations. The method proposed here is accurate, rapid, and easy to perform.  相似文献   

16.
《Carbohydrate research》1987,163(1):15-27
The actions of ammonium persulfate on (feruloylated) sugar-beet pectins and ferulate have been studied by spectrophotometry, viscometry, 1H-n.m.r. spectroscopy, and gel-permeation chromatography. The reactions followed a pseudo-first-order law with respect to pectin and ferulate, whereas the order with respect to ammonium persulfate was unity for pectins and varied from 0.5 to > 2 for ferulate. The rate constants mainly varied with the pH of the reaction mixture and there was an optimum at 3.8–5.7 for the gelation of the pectins. The results ruled out a simple condensation process between two ferulates (or feruloyl residues linked to the pectins) and suggeste a free-radical polymerisation reaction.  相似文献   

17.
Ultraflo L, a beta-glucanase preparation from Humicola insolens sold for reducing viscosity problems in the brewing industry, exhibited activity against the methyl esters of ferulic, caffeic, p-coumaric and sinapic acids, displaying mainly type-B feruloyl esterase activity. Ultraflo also contained the ability to release 65% of the available ferulic acid (FA) together with three forms of diferulate from brewer's spent grain (BSG). An "esterase-free" Ultraflo preparation greatly enhanced the ability of a feruloyl esterase from Aspergillus niger, AnFAEA, to release FA (from 23 to 47%) and its dimeric forms, especially the 8,5' benzofuran form, from BSG. While total release of these phenolic acids was not observed, this synergistic enhancement of ferulate release demonstrates that FA and its dimeric forms present in BSG require the addition of more than a xylanase. This suggests either that FA is not solely attached to arabinoxylan in the barley cell wall, or that the cell wall polysaccharides in BSG hinder the accessibility of enzymes to the ferulates, due to processing treatments.  相似文献   

18.
The oxidation processes of linoleic acid in the presence of ferulic acid, and 1-pentyl, 1-hexyl and 1-heptyl ferulates were observed at various temperatures and different molar ratios of each additive to linoleic acid. The processes were analyzed based on a kinetic equation of the autocatalytic type to evaluate the oxidative rate constant, k, and the kinetic parameter, Y(0), by which the initiation period for the oxidation of linoleic acid was mainly governed. The k values for linoleic acid mixed with each of the alkyl ferulates were smaller than that for linoleic acid mixed with ferulic acid. The greater suppressive effect of the alkyl ferulates would be ascribable to their higher solubility in linoleic acid. Both the activation energy, E, and the frequency factor, k(0), for the oxidation of linoleic acid mixed with ferulic acid or pentyl ferulate decreased with increasing molar ratio of the additive to linoleic acid.  相似文献   

19.
A unique N-linked glycosylation motif (Asn(79)-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward alpha-naphthylbutyrate (C4), alpha-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased Km and decreased k(cat) for N79A, and to a considerably decreased k(cat) for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.  相似文献   

20.
Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae and are considered as targets for drug design. We previously reported the first x-ray structure of an inosine-adenosine-guanosine preferring nucleoside hydrolase (IAG-NH) from Trypanosoma vivax (). Here we report the 2.0-A crystal structure of the slow D10A mutant in complex with the inhibitor 3-deaza-adenosine and the 1.6-A crystal structure of the same enzyme in complex with a genuine substrate inosine. The enzyme-substrate complex shows the substrate bound to the enzyme in a different conformation from 3-deaza-adenosine and provides a snapshot along the reaction coordinate of the enzyme-catalyzed reaction. The chemical groups on the substrate important for binding and catalysis are mapped. The 2'-OH, 3'-OH, and 5'-OH contribute 4.6, 7.5, and 5.4 kcal/mol to k(cat)/K(m), respectively. Specific interactions with the exocyclic groups on the purine ring are not required for catalysis. Site-directed mutagenesis indicates that the purine specificity of the IAG-NHs is imposed by a parallel aromatic stacking interaction involving Trp(83) and Trp(260). The pH profiles of k(cat) and k(cat)/K(m) indicate the existence of one or more proton donors, possibly involved in leaving group activation. However, mutagenesis of the active site residues around the nucleoside base and an alanine scan of a flexible loop near the active site fail to identify this general acid. The parallel aromatic stacking seems to provide the most likely alternative mechanism for leaving group activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号