首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The zinc(II) and copper(II) binding ability of two oligopeptide fragments, Ac-HHPHG-NH2 and Ac-HHPHGHHPHG-NH2, derived from the repeat-region of the His-Pro-rich domain of histidine-rich glycoprotein (HRG) and the structure of the formed complexes have been investigated by potentiometry, NMR-, UV-visible-, CD-, SRCD- and EPR spectroscopy. Exclusive coordination of the side-chain imidazoles of the peptides has been observed with both metal ions in the acidic and neutral pH range. While the three His units of the pentapeptide resulted in a modest stability of the ML complexes, the decapeptide with its increased number of His residues offered a high-affinity metal binding site for both metal ions with the participation of at least four nitrogen donors. Due to the high number of potential donor groups, the formation of binding isomers of the protonated and parent complexes is very likely. Both peptides show a synchrotron radiation (SR) CD-pattern resembling to that of the polyproline II structure, similarly to that of the His-Pro-rich domain of the HRG protein. The longer sequence was shown to bind a second metal ion in the slightly acidic pH-range. The determined stability data suggest a remarkable extra stabilization emerging in the decapeptide for the coordination of the second metal ions, as compared to the ML complexes of the pentapeptide. Whether the observed cooperativity has similarities to the cooperative metal binding feature of HRG or the two phenomena have different sources is a question yet to be clarified.  相似文献   

3.
Rabbit histidine-rich glycoprotein (HRG, 94 kDa) binds heparin with high affinity (apparent Kd 60-110 nM). Eosin Y (1 equiv) bound to HRG was used as a reporter group to monitor associations of HRG with heparins of molecular mass 10, 17.5, and 30 kDa. The stoichiometries of the heparin-HRG complexes were determined by fluorescence and absorbance measurements as well as by analytical ultracentrifugation. Two types of complex form: complexes of 1 heparin:1 HRG and of 1 heparin:2 HRG. The 1:2 complex formation requires a minimum heparin chain length since 17.5-kDa but not 10-kDa heparin binds two HRG molecules. The formation of the 1:2 complexes of the larger heparin fractions is enhanced by divalent copper or zinc (1-10 equiv) bound to HRG. However, metal is not required for complex formation since all sizes of heparin examined interact tightly with HRG in the presence of ethylenediaminetetraacetic acid. Between 0.1 and 0.3 M ionic strength, both 1:1 and 1:2 complexes of heparin with HRG are progressively destabilized. No heparin-HRG complex is found at ionic strengths of 0.5 M. Between pH 8.5 and pH 6.5 both 1:2 and 1:1 complexes are found with 17.5-kDa heparin, but at pH 5.5 only 1:1 complexes are formed. The heparin-HRG interaction is progressively decreased by modification of the histidine residues of HRG, whereas modification of 22 of the 33 lysine residues of HRG has little effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

6.
Histidine-rich glycoprotein (HRG) is a monomeric plasma glycoprotein involved in the modulation of coagulation and fibrinolysis. Using Southern analysis of human-rodent somatic cell hybrid DNA with a human HRG-specific cDNA probe, the HRG gene was assigned to chromosome 3. One hybrid that was known to contain only a segment of chromosome 3 also reacted positively with the HRG probe. Hybridization analysis with a set of chromosome 3-specific probes showed that the segment of chromosome 3 present in this hybrid is missing the region pter-p14, which indicates that HRG is not located in this region. No restriction fragment length polymorphisms were detected for HRG with 10 commonly used restriction enzymes.  相似文献   

7.
Crystalline complexes of Fe3+ and several aliphatic amino acids have been prepared. All have a basic molecular constitution [Fe[AA]2H2O]3O (ClO4)7, as determined by optical, magnetic, and Mössbauer measurements. The physical properties of these compounds display a marked similarity to those of ferritin.  相似文献   

8.
The present studies were designed to investigate the interaction of Fe3+transferrin-CO3(2-) with the transferrin receptors of the resealed reticulocyte ghost and to assess the degree to which the iron release reaction can be reconstituted in resealed ghosts supplemented with entrapped cytoplasmic components. Reticulocyte, but not erythrocyte, ghosts displayed an intact Fe3+transferrin-CO3(2-) binding capability. When ATP, NADH and ferritin were included during the resealing process, some iron release to the ghosts was observed.  相似文献   

9.
Histidine-rich glycoprotein (HRG) is a plasma adaptor protein involved in the formation of protein complexes that regulate a number of biological processes in the blood, most notably coagulation and the immune system. Elevated levels of HRG are clinically linked to thrombotic disorders such as blood vessel occlusion. A large body of evidence suggests that Zn2+ ions stimulate HRG-complex formation; however, under normal conditions the vast majority of Zn2+ in the blood is bound to human serum albumin (HSA). We have previously demonstrated that high levels of fatty acid act as an allosteric switch which disrupts the major Zn2+-binding site on HSA. Transient or sustained elevation of plasma fatty acid levels may therefore increase the proportion of plasma Zn2+ associated with HRG. We speculate that this mechanism may potentiate an increased risk of thrombosis in individuals with elevated fatty acid levels such as those associated with cancer, obesity and diabetes.  相似文献   

10.
The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.  相似文献   

11.
Fluorescent chemosensors based on 4‐hydroxy cyclopentenones were synthesized by the base catalyzed reaction of 1,5‐diphenyl‐pentane‐1,3,5‐trione with benzil and thenil. The molecule obtained by the benzil reaction was found to be useful for the selective detection of Fe3+ by fluorescence turn‐off, while the molecule synthesized by the thenil reaction was useful for selective detection of Cu2+ by fluorescent turn‐on. Details of the synthesis, complexation mode, nature of binding, reversibility, and pH studies of the two sensors are discussed. The studies revealed that the sensors were suitable for determining Fe3+ and Cu2+ content in real water samples.  相似文献   

12.
3-Mercaptopicolinic acid is known to be an inhibitor of phosphoenolpyruvate carboxykinase and 3-aminopicolinic acid permits Fe2+ to activate the enzyme. The potency of mercaptopicolinate is increased by incubating the enzyme with Fe2+ prior to assaying for activity. In the present work, the average combining ratio of either pyridine carboxylate with Fe2+ at pH 7.5 was determined to be 2:1 when measured by the method of continuous variation of Job or by elemental analysis of the isolated pyridine carboxylate-Fe2+ complexes. The ratio of 3-mercaptopicolinate or 3-aminopicolinate to Fe2+ that caused the greatest inhibition or activation of purified phosphoenolpyruvate carboxykinase was 2:1. In the absence of Fe2+, neither pyridine carboxylate altered the activity of the enzyme. These results indicate that the two pyridine carboxylates can interact with phosphoenolpyruvate carboxykinase as Fe2+ coordination complexes.  相似文献   

13.
研究了铜离子-半胱氨酸配合物的合成方法,探讨了合成工艺的主要影响因素,确定了原料配比,pH值,最佳反应时间及温度,采用X射线衍射光谱对配合物进行表征,结果表明铜离子能与半胱氨酸形成配合物。  相似文献   

14.
Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zinc shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes is isotopically light with respect to serum, whereas Cu is heavy. Iron and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.  相似文献   

15.
16.
17.
Nonlabeled MnCl2 and ZnSO4 compete with59Fe2+-ascorbate and59Fe 2 3+ O3 for transport binding sites situated on the plasma membranes of lactating mouse mammary gland cells. The binding was found to be a process reaching saturation. The heterologous competition used here ruled out the participation of transferrin and to propose that Fe, Mn, and Zn are transported from blood to milk by a mechanism involving one receptor during lactation. Further experiments are necessary to establish the details of the transport mechanism.  相似文献   

18.
19.
Cu(2+) and Zn(2+) inhibit all of the NADPH-dependent reactions catalyzed by neuronal nitric-oxide synthase (nNOS) including ferricytochrome c reduction, NADPH oxidation, and citrulline formation. Cu(2+) and Zn(2+) also inhibit ferricytochrome c reduction by the independent reductase domain. Zn(2+) affects all activities of the full-length nNOS and the reductase domain to the same extent (estimated IC(50) values from 9 to 31 microm), suggesting Zn(2+) occupation of a single site in the reductase domain. Citrulline formation and NADPH oxidation by the full-length nNOS and ferricytochrome c reduction by the reductase domain are affected similarly by Cu(2+), with estimated IC(50) values ranging from 6 to 33 microm. However, Cu(2+) inhibits ferricytochrome c reduction by the full-length nNOS 2 orders of magnitude more potently, with an estimated IC(50) value of 0.12 microm. These data suggest the possibility that Cu(2+) may interact with nNOS at two sites, one composed exclusively of the reductase domain (which is perhaps also involved in Zn(2+)-mediated inhibition), and another that includes components of both domains. Occupation of the second (higher affinity) site could then promote the selective inhibition of ferricytochrome c reduction in full-length nNOS. Neither the inhibition by Cu(2+) nor that by Zn(2+) is dependent on calmodulin.  相似文献   

20.
Distinct species are observed upon complexing of glycil-triptophan with Cu2+. The spectroscopic characterization of these complexes formed in different pH was made using visible light absorption (350-1100 nm) and electron paramagnetic resonance at room and liquid-nitrogen temperatures, with the samples in aqueous solution at the ratio of 10L:1M. Three species were identified in the following pH ranges: 4.0-6.0, 6.5-11.0, and above 12.00. The spectroscopic data and pK values of the Gly-Trp deprotonatable groups (in the presence of the metal) suggest that the complexes are CuL2(pH approximately 5.0), CuL(H2O). The complex above pH = 12.00 showed the bulky effect of the tryptophan side chain on the stereochemistry of the complex. The square planar symmetry is destroyed and a distorted tetahedral symmetry is achieved: the hyperfine parameter Az is reduced towards the value that occurs in blue proteins and the lowering of axial symmetry can be viewed by an increase in [gx-gy]. The tridentate complex CuL(H2O) was crystallized and single crystal measurements gave the molecular gyromagnetic tensor, but spin-spin interaction between neighbor ions masked the copper hyperfine interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号