首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plasmodium sex determination and transmission to mosquitoes   总被引:3,自引:0,他引:3  
In order to be transmitted by their mosquito vector, malaria parasites undergo sexual reproduction, which occurs between specialized male and female parasites (gametes) within the blood meal in the mosquito. Nothing was known about how Plasmodium determines the sex of its gametocytes (gamete precursors), which are produced in the vertebrate host. Recently, erythropoietin, the vertebrate hormone controlling erythropoiesis in response to anaemia, was implicated in Plasmodium sex determination in animal models of malaria. This review examines the available information and addresses the relevance of such a sex determining mechanism for Plasmodium falciparum transmission to mosquitoes, with special reference to low gametocytaemias.  相似文献   

3.
A developmental defect in Plasmodium falciparum male gametogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Asexually replicating populations of Plasmodium parasites, including those from cloned lines, generate both male and female gametes to complete the malaria life cycle through the mosquito. The generation of these sexual forms begins with the induction of gametocytes from haploid asexual stage parasites in the blood of the vertebrate host. The molecular processes that govern the differentiation and development of the sexual forms are largely unknown. Here we describe a defect that affects the development of competent male gametocytes from a mutant clone of P. falciparum (Dd2). Comparison of the Dd2 clone to the predecessor clone from which it was derived (W2'82) shows that the defect is a mutation that arose during the long-term cultivation of asexual stages in vitro. Light and electron microscopic images, and indirect immunofluorescence assays with male-specific anti-alpha- tubulin II antibodies, indicate a global disruption of male development at the gametocyte level with at least a 70-90% reduction in the proportion of mature male gametocytes by the Dd2 clone relative to W2'82. A high prevalence of abnormal gametocyte forms, frequently containing multiple and unusually large vacuoles, is associated with the defect. The reduced production of mature male gametocytes may reflect a problem in processes that commit a gametocyte to male development or a progressive attrition of viable male gametocytes during maturation. The defect is genetically linked to an almost complete absence of male gamete production and of infectivity to mosquitoes. This is the first sex-specific developmental mutation identified and characterized in Plasmodium.  相似文献   

4.
The molecular mechanisms regulating the sexual development of malaria parasites from gametocytes to oocysts in their mosquito vector are still largely unexplored. In other eukaryotes, NIMA-related kinases (Neks) regulate cell cycle progression and have been implicated in the regulation of meiosis. Here, we demonstrate that Nek-4, a new Plasmodium member of the Nek family, is essential for completion of the sexual cycle of the parasite. Recombinant Plasmodium falciparum Nek-4 possesses protein kinase activity and displays substrate preferences similar to those of other Neks. Nek-4 is highly expressed in gametocytes, yet disruption of the nek-4 gene in the rodent malaria parasite P. berghei has no effect on gamete formation and subsequent fertilization. However, further differentiation of zygotes into ookinetes is abolished. Measurements of nuclear DNA content indicate that zygotes lacking Nek-4 fail to undergo the genome replication to the tetraploid level that precedes meiosis. Cell cycle progression in the zygote is identified as a likely precondition for its morphological transition to the ookinete and for the successful establishment of a malaria infection in the mosquito.  相似文献   

5.
The transmission of malaria parasites to the mosquito depends critically on the rapid initiation of sexual reproduction in response to triggers from the mosquito midgut environment. We here identify an essential function for an atypical mitogen-activated protein kinase of the rodent malaria parasite Plasmodium berghei, Pbmap-2, in male sexual differentiation and parasite transmission to the mosquito. A deletion mutant no longer expressing the Pbmap-2 protein develops as wild type throughout the asexual erythrocytic phase of the life cycle. Gametocytes, the sexual transmission stages, form normally and respond in vitro to the appropriate environmental cues by rounding up and emerging from their host cells. However, microgametocytes fail to release flagellated microgametes. Female development is not affected, as judged by the ability of macrogametes to become cross-fertilized by microgametes from a donor strain. Cellular differentiation of Pbmap-2 KO microgametocytes is blocked at a late stage of male gamete formation, after replication and mitoses have been completed and axonemes have been assembled. These data demonstrate a function for Pbmap-2 in initiating cytokinesis and axoneme motility, possibly downstream of a cell cycle checkpoint for the completion of replication and/or mitosis, which are extraordinarily rapid in the male gametocyte.  相似文献   

6.
7.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

8.
Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show that XA triggers a rapid rise in cytosolic calcium specifically in gametocytes that is essential for their differentiation into gametes. A member of a family of plant-like calcium dependent protein kinases, CDPK4, is identified as the molecular switch that translates the XA-induced calcium signal into a cellular response by regulating cell cycle progression in the male gametocyte. CDPK4 is shown to be essential for the sexual reproduction and mosquito transmission of P. berghei. This study reveals an unexpected function for a plant-like signaling pathway in cell cycle regulation and life cycle progression of a malaria parasite.  相似文献   

9.
Phosphodiesterase (PDE) and guanylyl cyclase (GC) enzymes are key components of the cGMP signalling pathway and are encoded in the genome of Plasmodium falciparum . Here we investigate the role of specific GC and PDE isoforms in gamete formation – a process that is essential for malaria transmission and occurs in the Anopheles mosquito midgut following feeding on an infected individual. Details of the intracellular signalling events controlling development of the male and female gametes from their precursors (gametocytes) remain sparse in P. falciparum . Previous work involving the addition of pharmacological agents to gametocytes implicated cGMP in exflagellation – the emergence of highly motile, flagellated male gametes from the host red blood cell. In this study we show that decreased GC activity in parasites having undergone disruption of the PfGCβ gene had no significant effect on gametogenesis. By contrast, decreased cGMP-PDE activity during gametocyte development owing to disruption of the PfPDEδ gene, led to a severely reduced ability to undergo gametogenesis. This suggests that the concentration of cGMP must be maintained below a threshold in the developing gametocyte to allow subsequent differentiation to proceed normally. The data indicate that PfPDEδ plays a crucial role in regulating cGMP levels during sexual development.  相似文献   

10.
Transmission of haemospororin parasites (phylum Apicomplexa) needs the fertilization of at least one female by one male gamete within the bloodmeal of a suitable vector. Male and female gamete precursors (gametocytes) in Plasmodium and Haemoproteus parasites are normally alone inside the erythrocytes of the vertebrate host, but they also occur in male-female pairs in single erythrocytes. These paired gametocytes could enhance transmission success by facilitating the encounter between the female and male gametes when inside the midgut of the vector. Further study of these particular infections could provide new insights into the biology of and control strategies for haemospororin parasites.  相似文献   

11.
12.
Paul RE  Doerig C  Brey PT 《IUBMB life》2000,49(4):245-248
Malaria parasites proliferate asexually within the vertebrate host but must undergo sexual reproduction for transmission to mosquitoes and hence infection of new hosts. The developmental pathways controlling gametocytogenesis are not known, but several protein kinases and other putative signal transduction elements possibly involved in this phenomenon have been found in Plasmodium. Recently, another developmental pathway, that of Plasmodium sex determination (male or female), has been shown to be triggered by erythropoiesis in the host. Rapid progress is being made in our understanding of the molecular basis of mammalian erythropoiesis, revealing kinase pathways that are essential to cellular responses triggered by the hormone erythropoietin. Although the molecular mechanisms whereby this hormone modulates the sex ratio of malaria parasites remain to be elucidated, it probably activates, within the parasite, transduction pathways similar to those found in other eukaryotes. Indeed, enzymes belonging to protein kinase families known to be involved in the response of mammalian cells to erythropoietin (such as the mitogen-activated protein kinases) have been identified in P. falciparum gametocytes. Some of these enzymes differ markedly from their mammalian homologs; therefore, identification of the transduction pathways of the parasite that are responsible for its developmental response to erythropoietin opens the way to the development of transmission-blocking drugs based on kinase inhibitors.  相似文献   

13.
14.
Neal AT 《Parasitology》2011,138(10):1203-1210
Evolutionary theory predicts that the sex ratio of Plasmodium gametocytes will be determined by the number of gametes produced per male gametocyte (male fecundity), parasite clonal diversity and any factor that reduces male gametes' ability to find and combine with female gametes. Despite the importance of male gametocyte fecundity for sex ratio theory as applied to malaria parasites, few data are available on gamete production by male gametocytes. In this study, exflagellating gametes, a measure of male fecundity, were counted for 866 gametocytes from 26 natural infections of the lizard malaria parasite, Plasmodium mexicanum. The maximum male fecundity observed was 8, but most gametocytes produced 2-3 gametes, a value consistent with the typical sex ratio observed for P. mexicanum. Male gametocytes in infections with higher gametocytaemia had lower fecundity. Male fecundity was not correlated with gametocyte size, but differed among infections, suggesting genetic variation for fecundity. Fecundity and sex ratio were correlated (more female gametocytes with higher fecundity) as predicted by theory. Results agree with evolutionary theory, but also suggest a possible tradeoff between production time and fecundity, which could explain the low fecundity of this species, the variation among infections, and the correlation with gametocytaemia.  相似文献   

15.
16.
A central role for P48/45 in malaria parasite male gamete fertility   总被引:21,自引:0,他引:21  
Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.  相似文献   

17.
Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut. A complex signaling pathway likely responds to environmental events to trigger gametogenesis and regulate fertilization; however, such knowledge remains limited for malaria parasites. Several pseudokinases are highly transcribed at the gametocyte stage and are possible multi-functional regulators controlling critical steps of the life cycle. Here we characterized one pseudokinase, termed PypPK1, in Plasmodium yoelii that is highly expressed in schizonts and male gametocytes. Immunofluorescence assays for parasites expressing Myc-tagged PypPK1 confirmed that PypPK1 protein is expressed in schizonts and sexual stage parasites. Transgenic ΔpPK1 parasites, in which the PypPK1 gene locus was deleted by the CRISPR/Cas9 method, showed significant growth defect and reduced virulence in mice. In the blood stage, ΔpPK1 parasites were able to egress from erythrocytes similar to wild type parasites; however, erythrocyte invasion efficacy was significantly reduced. During sexual stage development, no clear changes were seen in male and female gametocytemias as well as gametocyte egress from erythrocytes; but, the number of exflagellation centers and oocysts were significantly reduced in ΔpPK1 parasites. Taken together, PypPK1 has an important role for both erythrocyte invasion and exflagellation center formation.  相似文献   

18.
Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA), can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP) stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG) inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+) is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.  相似文献   

19.
The Plasmodium subtilisin‐like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating Pberghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission‐blocking target.  相似文献   

20.
Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti‐PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission‐blocking vaccine target candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号