首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The spontaneous activity of 454 single hypothalamic neurons was recorded in 42 chronically ovariectomized rats after severance of all neural connections with the diencephalon. In 15 of these diencephalic island preparations progesterone was administered immediately before the recording session (and just after deafferentation of the diencephalon) and oestrogen 72 h beforehand. Thirteen rats were given two injections of oestrogen at these times and the remaining 14 rats were similarly treated with equal volumes of oil. Blood samples were obtained from all rats just before each hormone or oil injection, and 4, 5, 6 and 7 h after the second one, for subsequent measurement of plasma luteinizing hormone (LH) concentration. Only the group of rats given progesterone at the time of the second injection showed a significant increase in plasma LH concentration during the recording period. There was however some individual variation and the greatest LH surge was obtained from a rat given two injections of oestrogen. For steroid-treated rats the size of the LH surge was significantly correlated (P less than 0.01) with the mean firing rate of the neurons recorded in the preoptic and anterior hypothalamic areas (p.o.--a.h.). No similar correlation could be established for p.o.--a.h. cells recorded in oil-treated rats or for cells recorded in other parts of the hypothalamus in steroid-treated rats. The mean firing rate of all p.o.--a.h. cells recorded from rats treated with oestrogen followed by progesterone was significantly higher (P less than 0.05) than in either of the other two groups of animals. The oestrogen--progesterone treatment also significantly changed the regularity of discharge of the slow firing (less than 2 Hz) p.o.--a.h. cells, but this phenomenon could not be related to any alteration in plasma LH concentration. The experiments have demonstrated for the first time that the magnitude of the steroid-stimulated LH surge in ovariectomized rats is significantly correlated with the increase in the electrical activity of p.o.--a.h. neurons.  相似文献   

2.
Single unit activity was recorded from the area of the substantia nigra in freely moving cats. A sub-population of these neurons had the following characteristics: long action potential durations (2–4 msec); relatively slow discharge rates (2–6 spikes/sec); firing as single spikes along with periods of bursting activity in which spike amplitude successively decreased; suppression of unit activity by systemic injection of apomorphine and increased activity after systemic injection of haloperidol. These characteristics are similar to those of identified dopamine neurons recorded in chloral hydrate anesthetized or peripherally paralyzed rats. Therefore, based upon these physiological and pharmacological similarities, this study represents the first systematic report providing evidence for recording the activity of dopaminergic neurons in freely moving cats. In addition, when these cells were studied across the sleep-waking cycle they displayed little variation in firing rates between waking, slow wave sleep and REM sleep.  相似文献   

3.
Pyramidal unit activity in unanesthetized cats at rest and during voluntary movement was recorded by a microelectrode technique from the motor cortex for the forelimb. Some pyramidal neurons were not spontaneously active. The conduction velocity along the axon of these neurons was sometimes high (up to 71.5 m/sec), sometimes low (up to 11.2 m/sec). The remaining pyramidal neurons had spontaneous activity with a mean frequency of 1.29 to 43 spikes/sec. Analysis of interspike interval histograms of spontaneous activity and of autocorrelation histograms showed grouping of the spikes into volleys in most pyramidal neurons (irrespective of the conduction velocity). During voluntary movements the change in the activity of many pyramidal units correlated with changes in the EMG. The firing rate of the pyramidal neurons under these circumstances began to rise at least 50 msec before the increase in amplitude of the EMG and it remained high throughout the movement. The firing rate of most neurons during movement was 40–60/sec. The results are compared with those obtained by other workers who studied pyramidal unit activity of monkeys during voluntary movement.  相似文献   

4.
A microiontophoretic study using rats anesthetized with chloral hydrate and immobilized with gallamine triethiodide was carried out to compare the effect of talipexole (B-HT 920 CL2:2-amino-6-allyl-5,6,7,8-tetrahydro-4H-thiazolo [4,5-d]-azepine-dihydrochloride), a dopamine autoreceptor agonist, on dopaminergic neurons in the ventral tegmental area (VTA) to non-dopaminergic neurons in the VTA. VTA neurons were classified into two types according to the responses to antidromic stimulation of the nucleus accumbens (Acc): type I neurons with a long spike latency (8.69 +/- 0.24 msec) upon Acc stimulation and low spontaneous firing rate (6.80 +/- 1.34/sec), and type II neurons with a short latency (2.76 +/- 0.20 msec) and high spontaneous firing rate (26.77 +/- 7.05/sec), probably corresponding to dopaminergic and non-dopaminergic neurons, respectively. In type I neurons, microiontophoretic application of talipexole and dopamine inhibited antidromic spike generation elicited by Acc stimulation, and talipexole-induced inhibition was antagonized by domperidone (dopamine D-2 antagonist). In type II neurons, however, the antidromic spikes were not affected by either talipexole or dopamine. Furthermore, spontaneous firing was also inhibited by iontophoretically applied talipexole and dopamine in most type I neurons, but rarely affected by either drug. Inhibitory effects of talipexole were antagonized by domperidone. These results suggest that talipexole acts on dopamine D-2 receptors, thereby inhibiting the dopaminergic neurons in the VTA.  相似文献   

5.
Gonadotropin-Releasing Hormone (GnRH) is a small neuropeptide that regulates pituitary release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These gonadotropins are essential for the regulation of reproductive function. The GnRH-containing neurons are distributed diffusely throughout the hypothalamus and project to the median eminence where they release GnRH from their axon terminals into the hypophysiotropic portal system (1). In the portal capillaries, GnRH travels to the anterior pituitary gland to stimulate release of gonadotropins into systemic circulation. GnRH release is not continuous but rather occurs in episodic pulses. It is well established that the intermittent manner of GnRH release is essential for reproduction (2, 3).Coordination of activity of multiple GnRH neurons probably underlies GnRH pulses. Total peptide content in GnRH neurons is approximately 1.0 pg/cell (4), of which 30% likely comprises the releasable pool. Levels of GnRH during a pulse (5, 6), suggest multiple GnRH neurons are probably involved in neurosecretion. Likewise, single unit activity extracted from hypothalamic multi-unit recordings during LH release indicates changes in activity of multiple neurons (7). The electrodes with recorded activity during LH pulses are associated with either GnRH somata or fibers (8). Therefore, at least some of this activity arises from GnRH neurons.The mechanisms that result in synchronized firing in hypothalamic GnRH neurons are unknown. Elucidating the mechanisms that coordinate firing in GnRH neurons is a complex problem. First, the GnRH neurons are relatively few in number. In rodents, there are 800-2500 GnRH neurons. It is not clear that all GnRH neurons are involved in episodic GnRH release. Moreover, GnRH neurons are diffusely distributed (1). This has complicated our understanding of coordination of firing and has made many technical approaches intractable. We have optimized loose cell-attached recordings in current-clamp mode for the direct detection of action potentials and developed a recording approach that allows for simultaneous recordings from pairs of GnRH neurons.  相似文献   

6.
Neurons in the visual cortex receive input from the lateral geniculate nucleus (feed-forward), higher order visual areas (feedback) and local neurons in the surroundings (lateral interactions). Here we first briefly review the approximate timing and proportion of these three types of influences on the membrane potentials in visual areas 17, 18 and 19. Then we present original results from an independent component analysis of multiunit spike trains in the same visual areas to resolve the contribution from these three sources. We stimulated the visual cortex of the ferret with a small transient contrast square stimulus and recorded the multiunit activity in areas 17, 18 and 19 with single or multiple electrodes. The spike trains had three reproducible components having their maxima at 40, 55 and 105ms after the start of the presentation of the stimulus. The time course of the third component was significantly correlated with the population membrane potential in the supragranular layers of areas 17, 18 and 19. The first spike train component was interpreted as a feed-forward response, the second spike train component as driving the laterally spreading depolarization and the third spike train component as the firing caused by the lateral spreading- and the feedback depolarization.  相似文献   

7.
Recently, physical exercise has been shown to significantly alter neurochemistry and neuronal function and to increase neurogenesis in discrete brain regions. Although we have documented that physical exercise leads to molecular changes in the posterior hypothalamic area (PHA), the impact on neuronal activity is unknown. The purpose of the present study was to determine whether neuronal activity in the PHA is altered by physical exercise. Spontaneously hypertensive rats (SHR) were allowed free access to running wheels for a period of 10 wk (exercised group) or no wheel access at all (nonexercised group). Single-unit extracellular recordings were made in anesthetized in vivo whole animal preparations or in vitro brain slice preparations. The spontaneous firing rates of PHA neurons in exercised SHR in vivo were significantly lower (8.5 +/- 1.6 Hz, n = 31 neurons) compared with that of nonexercised SHR in vivo (13.7 +/- 1.8 Hz, n = 38 neurons; P < 0.05). In addition, PHA neurons that possessed a cardiac-related rhythm in exercised SHR fired significantly lower (6.0 +/- 1.8 Hz, n = 11 neurons) compared with nonexercised SHR (12.1 +/- 2.4 Hz, n = 18 neurons; P < 0.05). Similarly, the spontaneous in vitro firing rates of PHA neurons from exercised SHR were significantly lower (3.5 +/- 0.3 Hz, n = 67 neurons) compared with those of nonexercised SHR (5.6 +/- 0.5 Hz, n = 58 neurons; P < 0.001). Both the in vivo and in vitro findings support the hypothesis that physical exercise can lower spontaneous activity of neurons in a cardiovascular regulatory region of the brain. Thus physical exercise may alter central neural control of cardiovascular function by inducing lasting changes in neuronal activity.  相似文献   

8.
Phase-of-firing coding of natural visual stimuli in primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.  相似文献   

9.
Single unit recordings were obtained from putative dopaminergic neurons in the substantia nigra of awake, freely moving rats. The cells exhibited waveforms, range of firing rates and types of firing patterns identical to those of identified DA neurons of anesthetized or paralyzed rats. Two firing patterns were observed: single spike activity and a bursting mode with spikes of progressively diminished amplitude and increased duration within each burst. The degree of burst firing varied considerably among the cells and individual cells sometimes switched from one pattern of firing (e.g. predominantly single spike) to another (e.g. bursting), although the determinants of these transitions are, at this time, unclear. Putative DA neurons were inhibited by i.v. apomorphine and excited by i.v. haloperidol. Haloperidol also reversed the apomorphine-induced inhibition of firing. Inhibitions and excitations were associated with a reduction and elevation, respectively, in burst firing. The effects of the two drugs were identical to their effects in immobilized rats. In several cases, a putative DA neuron was observed to fire all of its spikes in near coincidence with at least one other cell with identical electrophysiological characteristics. This form of interaction (i.e. presumed electrical coupling) between DA cells is only rarely observed in anesthetized or paralyzed rats and may play a significant role in the normal functioning of the nigrostriatal DA system.  相似文献   

10.
A specially adapted microelectrode driver device has been used to record the spontaneous activity of neurons in the olfactory bulb of awake rabbits. Several parameters of this activity were studied in 78 neurons of conscious animals. A second experiment was performed to investigate anaesthetic-induced modifications of the spike discharge initially recorded in awake animals. 1. In unanaesthetized animals, the interspike interval distribution of all cells was found to be stable over short as well as long periods of time. 2. A periodical change in firing probability, correlated with respiratory activity, was observed in a high percentage of neurons. During inspiration, the discharge was markedly increased ("well synchronized" neurons, n = 2), slightly increased ("poorly synchronized" neurons, n = 15); or unchanged ("not synchronized" neurons, n = 8). 3. The passage from the awake to the anaesthetized state resulted in more regular cell activity with sudden changes from one steady firing level to another, without affecting the cell classification. As anaesthesia wore off, the cell units recovered the characteristic discharge pattern initially observed.  相似文献   

11.
On freely moving albino rats we demonstrated that, when fast food-procuring movements are performed, the mass electrical activity of the lateral hypothalamus (LH) is suppressed 1.6–2.0 sec before the movement beginning recorded with a photoelectrical device. Videorecording of the movements and recording of the spike activity of LH units showed that the latter are activated 1.0–0.1 sec before the movement initiation. The LH is considered a motivation-related structure, which serves as a source providing an increase in the excitability of the structures involved in the control of food-procuring movements and, further on, supporting this increased excitability. The LH is also a component of the mechanisms providing formation of the motor program. The role of the LH in the ensemble of motor centers, which organize and control voluntary movements, is discussed.  相似文献   

12.
Chronic catheterization and miniature recording device allowed plasma corticosterone (B) and hypothalamic multiunit activity (MUA) to be simultaneously obtained from freely behaving, awake pigeons, before and for 4 hrs after intravenous injection of metyrapone. Injection of vehicle (tartric acid : 100 mg/4 ml/kg) led to MUA and B profiles quite similar to stress-induced responses, i.e., a rapid and sustained rebounding increase in hypothalamic firing rate and, shifted by 5-10 min, in plasma B. These responses were progressively attenuating for 90-120 mn. Metyrapone administration induced first a rapid and short MUA and B increase. Then both parameters drastically decreased near zero for about 2 hrs and were slowly restored to initial values within 3-4 hrs. It is suggested that metyrapone treatment inhibited both peripheral (B synthesis) and central (hypothalamic neurons) levels of the corticotropic axis.  相似文献   

13.
The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so.n. Intracellular recordings from so.n. neurons revealed them to have an average membrane potential of -67 +/- 0.8 mV (mean +/- s.e.m.), membrane resistance of 145 +/- 9 M omega with linear current-voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14 +/- 2.2 ms. So.n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76 +/- 2 mV, and a spike width of 2.6 +/- 0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6 +/- 1.8 ms. Action potentials could be blocked by 10(-6) M tetrodotoxin. Spontaneously active so.n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 M KCl electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg2+, Mn2+ or Co2+. 74% of so.n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9 +/- 0.2 s-1. Of these cells, 21% fired slowly and continuously at 0.1 - 1.0 s-1, 45% fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7 +/- 4.5 s and a silent period of 28.2 +/- 4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron's proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.  相似文献   

14.
The hypothalamic thermoregulatory center was regarded as a black box some 20 years ago. Subsequent microelectrode exploration revealed the existence of two kinds of thermosensitive neurons in this area. Discharges of these neurons are now recorded not only from anesthetized animals but also from tissue explants, tissue slices, and unanesthetized animals as well. Neuronal responses produced by some stimuli have been compared to whole-body thermoregulatory responses. Parallelism between the two was found in the actions of chemicals, in integration of peripheral and central temperatures, in cortical influence, and in temperature effects on other hypothalamic functions, implicating specific key roles to thermosensitive neurons in thermoregulation.  相似文献   

15.
The multiunit activity of neurons in the motor cortex was recorded in 6 rabbits during glutamate (or physiological saline) iontophoretic application. Interaction between the neighboring neurons was evaluated by means of statistical cross-correlation analysis of spike trains. It was found that glutamate did not produce significant changes in cross-correlations.  相似文献   

16.
17.
To determine if LHRH might act within the brain to modify its own release, repeated blood samples were removed from conscious ovariectomized rats and minute doses of LHRH were injected into the third ventricle (3V). The effect of these injections on plasma LH and FSH was measured by radioimmunoassay (RIA). The higher dose of intraventricular LHRH (10 ng in 2 microliter) induced an increase in plasma LH within 10 min after its injection. Plasma LH decreased for the next 60 min. This was followed by restoration of LH pulses characteristic of the ovariectomized rat. This dose of LHRH slightly elevated plasma FSH concentrations. In stark contrast, a 10 fold lower dose of 1 ng of LHRH injected into the ventricle resulted in a highly significant decrease of plasma LH at 10 min following injection, followed by return of LH pulsations. There was no effect on the pulsatile release of FSH. The results are interpreted to mean that at the higher dose, sufficient LHRH reached the site of origin of the hypophyseal portal vessels in the median eminence so that it diffused into portal vessels and was delivered to the gonadotrophs to induce LH release. In contrast, the lower dose provided sufficient hypothalamic concentrations of the peptide to suppress the discharge of the LHRH neurons, thereby leading to a decline in plasma LH, indicative of an ultrashort-loop negative feedback of LHRH to suppress its own release.  相似文献   

18.
Sex steroids and the control of LHRH secretion   总被引:2,自引:0,他引:2  
Gonadal steroids are important hormonal signals that regulate the activity of LHRH synthesizing and releasing neurons. Aside from a direct effect through the feedback mechanisms exerted at hypothalamic and/or anterior pituitary level, gonadal steroids may modify the rhythmic LHRH release by modulating other systems affecting LHRH neurons. 1. In ovariectomized E2-treated female rats, progesterone is able to evoke LHRH release from the perifused hypothalamus without affecting LH and FSH release. 2. Excitatory amino acids (EAA) and their related analogs (NMDA and kainate) are known to stimulate LH release in young rats. When tested in a perifusion system on hypothalamic and anterior pituitary tissues, they differentially stimulate the release of LHRH (NMDA) and of LH (KA); their effect on both structures is markedly reduced following orchidectomy. It appears that gonadal steroids might exert a facilitatory action on the neurosecretory activity of LHRH neurons as well as a modulatory influence on the effect of EAA.  相似文献   

19.
Extracellular single-cell recordings were performed on rat brain slices to compare the effects of morphine on noradrenergic neurons of the locus coeruleus (LC) and on dopaminergic neurons of the ventral tegmental area (VTA). Morphine inhibited the firing of LC neurons at very low concentrations. The mean IC50 was 13.4 +/- 1nM (mean +/- SEM) (n = 7). Moreover, the inhibitory effect of morphine was identical in slices obtained from rats anesthetized with chloral hydrate or from non-anesthetized rats. On the contrary, morphine did not have any influence on the firing of most VTA neurons (N = 20) up to 100 microM, and did not modify the sensitivity of their autoreceptors (N = 8). It is concluded that morphine potently inhibits the firing of LC neurons in vitro both in slices of anesthetized and not anesthetized animals and has no direct excitatory effect on VTA dopaminergic neurons of the rat.  相似文献   

20.
The serotonergic dorsal raphe (DR) neurons play an important role in sleep-wakefulness regulation. Orexinergic neurons in the lateral hypothalamus densely project to the brainstem sites including the DR. To test the effects of orexins on the serotonergic DR neurons, we applied orexin A (0.1 mM) by pressure to these neurons in unanesthetized and urethane anesthetized rats. Orexin A caused excitation in 10 of 15 neurons under unanesthetized condition. The excitation was characterized by slow onset (0-18 s), long lasting duration (15-150 s) and state-dependency. Orexin A applied during REM sleep or slow wave sleep induced significant excitation while during wakefulness, the similar amount of orexin A did not increase the firing rate any more. In the anesthetized animals, orexin A induced excitation in four of eight neurons. The excitation had slow onset and was long lasting. These results suggest that orexinergic neurons exert excitatory influence on the serotonergic DR neurons to maintain tonic activity of them, thereby participating in regulation of sleep-wakefulness cycles and other functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号