首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI to obtain 4- to 14-kilobase fragments, which were used to construct a library of recombinant phage by ligation with EcoRI arms of lambda gtWES. lambda B. A recombinant phage coding for xylanase activity which contained a 14-kilobase insert was identified. The xylanase gene was localized to a 2.1-kilobase SalI fragment of the EcoRI insert by subcloning onto pBR322 and derivatives of pBR322 that can also replicate in Streptomyces lividans. The xylanase activity produced by S. lividans transformants was 10- to 20-fold higher than that produced by Escherichia coli transformants but only one-fourth the level produced by induced T. fusca. A 30-kilodalton peptide with activity against both Remazol brilliant blue xylan and xylan was produced in S. lividans transformants that carried the 2.1-kilobase SalI fragment of T. fusca DNA and was not produced by control transformants. T. fusca cultures were found to contain a xylanase of a similar size that was induced by growth on xylan or Solka Floc. Antiserum directed against supernatant proteins isolated from a Solka Floc-grown T. fusca culture inhibited the xylanase activity of S. lividans transformants. The cloned T. fusca xylanase gene was expressed at about the same level in S. lividans grown in minimal medium containing either glucose, cellobiose, or xylan. The xylanase bound to and hydrolyzed insoluble xylan. The cloned xylanase appeared to be the same as the major protein in xylan-induced T. fusca culture supernatants, which also contained at least three additional minor proteins with xylanase activity and having apparent molecular masses of 43, 23, and 20 kilodaltons.  相似文献   

2.
In two separate studies a BclI-generated DNA fragment coding for the enzyme tyrosinase, responsible for melanin synthesis, was cloned from Streptomyces antibioticus DNA into two SLP1.2-based plasmid vectors (pIJ37 and pIJ41) to generate the hybrid plasmids, designated pIJ700 and pIJ701, using S. lividans 66 as the host. The fragment (1.55 kb) was subcloned into the multicopy plasmid pIJ350 (which carries thiostrepton resistance and has two non-essential BclI sites) to generate four new plasmids (pIJ702-pIJ705) with the tyrosinase insert located in either orientation at each site. All six plasmids conferred melanin production (the Mel+ phenotype) on their host. As in the S. antibioticus parent, strains of S. lividans carrying the gene specifying tyrosinase synthesis possessed an enzyme activity which was inducible. Most of the tyrosinase activity was secreted during growth of S. antibioticus; in contrast, the majority remained intracellular in the S. lividans clones. The specific activity of the induced tyrosinase activity (intracellular) was higher (up to 36-fold) when the gene was present on the multicopy vector in comparison with its location on the low copy plasmids, pIJ700 or pIJ701, or in S. antibioticus. Restriction mapping of the tyrosinase fragment in pIJ702 revealed endonuclease cleavage sites for several enzymes, including single sites for BglII, SphI and SstI that are absent from the parent vector (pIJ350). Insertion of DNA fragments at any one of these sites abolished the Mel+ phenotype. The results indicate that pIJ702 is a useful cloning vector with insertional inactivation of the Mel+ character as the basis of clone recognition.  相似文献   

3.
4.
The cellobiohydrolase II (CBHII) of Microbispora bispora, originally cloned in Escherichia coli, was subcloned into Streptomyces lividans using shuttle vectors pSKN 01 and pSKN 02. The enzyme was secreted from Streptomyces, whereas it was intracellular in E. coli. The yields of CBHII produced by S. lividans transformants were 15–20-fold higher than those produced by E. coli transformants. The optimal pH of M. bispora native cellobiohydrolase and the cloned enzyme from S. lividans is 6.5. The thermal and pH stability of CHBII produced in M. bispora, E. coli and S. lividans were compared. Enzyme produced in E. coli was inactivated more rapidly (k = 0.252 min–1 at 90° C; 90% inactivation after 10 min vs. 0.119 min–1 for the others). CBHII was monitored following electrophoretic separation by reaction with a monoclonal antibody. The apparent molecular mass of the protein produced from the S. lividans clone was 93 kDa, the same as that of the native enzyme, but that of the enzyme produced in E. coli was smaller (82 kDa). Correspondence to: P. Hu  相似文献   

5.
Summary The production of cellulases and of xylanase by Streptomyces lividans 1326 was studied under different growth conditions. The strain grew between 18°C and 46°C and is therefore thermotolerant. Submerged cultures of the microorganism, when grown on a defined salt medium containing xylan as main carbon source, exhibited an overall cellulolytic activity as determined by the filter paper test. S. lividans produced optimal levels of extracellular -1,4-glucan-glucanohydrolase (1 IU/ml) and large amounts of -1,4-xylanxylanohydrolase (50 IU/ml) at 40°C. A better production of both enzymes was observed when xylan instead of cellulose was used as substrate.The stability of the enzyme was found to be significantly greater than those of the cellulases and xylanases produced by other streptomycetes. The optimal incubation temperatures for the enzyme assays were 55°C and 60°C for CM-cellulase and xylanase respectively and optimal pH values were found in the range of pH 6–7.  相似文献   

6.
7.
An extracellular xylanase produced by a cellulase-negative mutant strain of Streptomyces lividans 1326 was purified to homogeneity. The purified enzyme has an apparent Mr of 43,000 and pI of 5.2. The pH and temperature optima for the activity were 6.0 and 60 degrees C respectively, and the Km and Vmax. values, determined with a soluble oat spelts xylan, were 0.78 mg/ml and 0.85 mmol/min per mg of enzyme. The xylanase showed no activity towards CM-cellulose and p-nitrophenyl beta-D-xyloside. The enzyme degraded xylan, producing mainly xylobiose, a mixture of xylo-oligosaccharides and a small amount of xylose as end products. Its pattern of action on beta-1,4-D-xylan indicates that it is a beta-1,4-endoxylanase (EC 3.2.1.8).  相似文献   

8.
利用启动子探测质粒pIJ486(Tsr~(?) Neo~(?))将变铅青链霉菌(streptomyces lividans)TK24染色体DNA的BamHI酶切片段插入pIJ486的BamHI位点。获得4个硫链丝菌肽抗性、新霉素抗性的重组质粒。它们分别命名为pMGI(10.6kb)、pMG40(7.6kb)、pMG50(10.8kb)和pMG88(7.92kb)。BamHI酶切分析及再转化试验表明,新霉素抗性的恢复确实来自载体的外源插入序列。用BgⅢ酶切已将pMG40的插入序列缩小到0.78kb的pMG40-2,pMG50的插入序列缩小到2.2kb的pMG50-25,仍保留启动子活性。重组质粒pMG50-25的新霉素抗性水平高达90μg/ml(卡那霉素抗性水平为500μg/ml),表明这是一个活性很强的启动子。  相似文献   

9.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

10.
A 19 kb SphI DNA fragment containing the gene for the extracellular active-site serine beta-lactamase of Streptomyces cacaoi KCC-SO352 was cloned in Streptomyces lividans TK24 using the high-copy-number plasmid pIJ702 as vector. A 30-fold higher yield of beta-lactamase was obtained from S. lividans strain ML1, carrying the recombinant plasmid pDML51, than from S. cacaoi grown under optimal production conditions. In all respects (molecular mass, isoelectric point, kinetics of inhibition by beta-iodopenicillanate) the overproduced S. lividans ML1 beta-lactamase was identical to the original S. cacaoi enzyme. A considerable reduction of beta-lactamase production was caused by elimination of a 12.8 kb portion of the 19 kb DNA fragment by cleavage at an internal SphI site located more than 3 kb upstream of the beta-lactamase structural gene. The beta-lactamase gene was located within a 1.8 NcoI-BclI fragment but when this fragment was cloned in S. lividans pIJ702, the resulting strain produced hardly any more beta-lactamase than the original S. cacaoi.  相似文献   

11.
The role of four aromatic residues (W85, Y172, W266 and W274) in the structure-function relationship in xylanase A from Streptomyces lividans (XlnA) was investigated by site-directed mutagenesis where each residue was subjected to three substitutions (W85A/H/F; W266A/H/F; W274A/H/F and Y172A/F/S). These four amino acids are highly conserved among family 10 xylanases and structural data have implicated them in substrate binding at the active site. Far-UV circular dichroism spectroscopy was used to show that the overall structure of XlnA was not affected by any of these mutations. High-performance liquid chromatographic analysis of the hydrolysis products of birchwood xylan and xylopentaose showed that mutation of these aromatic residues did not alter the enzyme's mode of action. As expected, though, it did reduce the affinity of XlnA for birchwood xylan. A comparison of the kinetic parameters of different mutants at the same position demonstrated the importance of the aromatic nature of W85, Y172 and W274 in substrate binding. Replacement of these residues by a phenylalanine resulted in mutant proteins with a K(M) closer to that of the wild-type protein in comparison with the other mutations analyzed. The kinetic analysis of the mutant proteins at position W266 indicated that this amino acid is important for both substrate binding and efficient catalysis by XlnA. These studies also demonstrated the crucial role of these active site aromatic residues for the thermal stability of XlnA.  相似文献   

12.
S Biro  K F Chater 《Gene》1987,56(1):79-86
Streptomyces lividans gyl DNA (for glycerol utilisation) was cloned by complementation of a Streptomyces coelicolor gyl mutant. Restriction mapping showed that the cloned DNA was highly homologous (perhaps 99%) to S. coelicolor gyl DNA. Using phage-mediated mutational cloning, an internal fragment of the S. coelicolor gyl operon was used to generate a gyl mutant of S. lividans, which subsequently served as recipient in the cloning of gyl DNA from S. griseus. A 7.5-kb SstI-generated fragment of S. griseus DNA was obtained which, as judged by analysis of restriction sites, was only perhaps 87% homologous with the S. coelicolor gyl operon. The cloned S. griseus DNA appears to contain intact gylA and gylB genes and probably also an upstream gene related to the putative gyl regulatory '0.9-kb' gene of S. coelicolor. Cloning of the fragment on a high-copy-number vector in S. lividans did not lead to high levels of the enzymes encoded by gylA and gylB. The S. griseus gylA and gylB genes were not detectably expressed in Escherichia coli glp mutants.  相似文献   

13.
The cholesterol oxidase gene (cho) of Streptomyces sp. was cloned into Streptomyces lividans with the vector pIJ702. Deletion analysis of the recombinant plasmid showed that entire coding sequence of the cho gene was located within a 2.5-kilobase segment of the chromosomal DNA obtained from the cholesterol oxidase-producing strain. When cloned cells of S. lividans were grown in an appropriate medium, the cells produced severalfold more cholesterol oxidase extracellularly than did the producing strain.  相似文献   

14.
15.
Summary A third extracellular xylanase produced by Streptomyces lividans 66 was isolated from a clone obtained by shotgun cloning through functional complementation of a xylanase- and cellulase-negative mutant using the multicopy vector pIJ702. This enzyme, designated xylanase C, has a relative molecular mass of 22000 and acts on xylan similarly to xylanase B as an endo-type xylanase producing short-chain oligoxylosides. Its specific activity determined at 1100 IU·mg–1 of protein corresponds on a molecular basis to that of xylanase B and is about three times that of xylanase A. The enzyme shows optimal activity at pH 6.0 and 57°C, values that correspond closely to those observed previously for xylanase A and B. Xylanase C appears not to be glycosylated and has a pI > 10.25. Its K m and V max on birchwood xylan are 4.1 mg·ml–1 and 3.0 mol·min–1·mg–1 of enzyme respectively. Whereas specific antibodies raised against xylanase A show no cross-reaction with either xylanase B or with xylanase C, the anti-(xylanase C) antibodies react slightly with xylanase B but not with xylanase A. A comparison of hydrolysis products obtained by reacting individually the three enzymes with birchwood xylan showed characteristic endo-activity patterns for xylanases B and C, whereas xylanase A hydrolysed the substrate preferentially into xylobiose and xylotriose. Sequential xylanase action on the same substrates showed synergistic hydrolysis only when endo-xylanase activity was followed by that of xylanase A.  相似文献   

16.
The cholesterol oxidase gene (cho) of Streptomyces sp. was cloned into Streptomyces lividans with the vector pIJ702. Deletion analysis of the recombinant plasmid showed that entire coding sequence of the cho gene was located within a 2.5-kilobase segment of the chromosomal DNA obtained from the cholesterol oxidase-producing strain. When cloned cells of S. lividans were grown in an appropriate medium, the cells produced severalfold more cholesterol oxidase extracellularly than did the producing strain.  相似文献   

17.
A 4.9-kb DNA fragment containing the bla gene for the extracellular beta-lactamase (BLA) of Streptomyces albus G was cloned in Streptomyces lividans using the conjugative, low-copy-number plasmid pIJ61 as vector. No expression of bla was observed when this DNA fragment was introduced into Escherichia coli HB101 on a plasmid vector. A 1.5-kb PstI-SstI fragment containing the bla gene was cloned in S. lividans on the nonconjugative, high-copy-number plasmid pIJ702. A tenfold higher yield of BLA was obtained from S. lividans carrying this plasmid than from S. albus G grown under optimal production conditions. The BLA from the clone reacts with beta-iodopenicillanate according to a branched pathway which is characteristic of the original S. albus G BLA enzyme.  相似文献   

18.
19.
Thiostrepton-induced gene expression in Streptomyces lividans.   总被引:10,自引:3,他引:10       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号