首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lysophosphatidic acid as a novel cell survival/apoptotic factor   总被引:13,自引:0,他引:13  
Lysophosphatidic acid (LPA) activates its cognate G protein-coupled receptors (GPCRs) LPA(1-3) to exert diverse cellular effects, including cell survival and apoptosis. The potent survival effect of LPA on Schwann cells (SCs) is mediated through the pertussis toxin (PTX)-sensitive G(i/o)/phosphoinositide 3-kinase (PI3K)/Akt signaling pathways and possibly enhanced by the activation of PTX-insensitive Rho-dependent pathways. LPA promotes survival of many other cell types mainly through PTX-sensitive G(i/o) proteins. Paradoxically, LPA also induces apoptosis in certain cells, such as myeloid progenitor cells, hippocampal neurons, and PC12 cells, in which the activation of the Rho-dependent pathways and caspase cascades has been implicated. The effects of LPA on both cell survival and apoptosis underscore important roles for this lipid in normal development and pathological processes.  相似文献   

2.
3.
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.  相似文献   

4.
The activation of Akt/PKB signaling pathway and cell survival   总被引:22,自引:0,他引:22  
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.  相似文献   

5.
PI3K-Akt信号传导通路对糖代谢的调控作用   总被引:1,自引:0,他引:1  
磷脂酰肌醇3-激酶(PI3Ks)作为酪氨酸激酶和G蛋白偶联受体的主要下游分子,通过催化产生第二信使3,4,5-三磷酸磷脂酰肌醇(PIP3)并激活Akt、糖原合酶激酶-3(GSK-3)、Forkhead转录因子FoxO1、mTOR(mammalian target of rapamycin)等下游分子,将多种生长因子及细胞因子的信号传递到细胞内,从而对细胞增殖、分化、凋亡和葡萄糖转运等多种生物过程起重要的调节作用.PTEN(phosphatase and tensin homologue)是PI3K信号通路的重要负调节因子.本文将对PI3K-Akt信号通路在糖代谢中的作用予以简要综述.  相似文献   

6.
The phosphoinositide 3-OH kinase (PI3K)/Akt pathway has been implicated in regulating several important cellular processes, including apoptosis, survival, proliferation, and metabolism. Using both pharmacological and genetic means, we demonstrate here that PI3K/Akt plays a crucial role in the proliferation of adult hippocampal neural progenitor cells. PI3K/Akt transduces intracellular signals from multiple mitogens, including basic fibroblast growth factor (FGF-2), Sonic hedgehog (Shh), and insulin-like growth factor 1 (IGF-1). In addition, retroviral vector-mediated over-expression of wild type Akt increased cell proliferation, while a dominant negative Akt inhibited proliferation. Furthermore, wild type Akt over-expression reduced glial (GFAP) and neuronal (beta-tubulin III) marker expression during differentiation, indicating that it inhibits cell differentiation. We also show that activation of the cAMP response element binding protein (CREB), which occurs in cells stimulated by FGF-2, is limited when Akt signaling is inhibited, demonstrating a link between Akt and CREB. Over-expression of wild type CREB increases progenitor proliferation, whereas dominant negative CREB only slightly decreases proliferation. These results indicate that PI3K/Akt signaling integrates extracellular signaling information to promote cellular proliferation and inhibit differentiation in adult neural progenitors.  相似文献   

7.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   

8.
Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis   总被引:3,自引:1,他引:2  
The heptahelical G protein-coupled receptor (GPCR) family includes approximately 900 members and is the largest family of signaling receptors encoded in the mammalian genome. G protein-coupled receptors elicit cellular responses to diverse extracellular stimuli at the plasma membrane and some internalized receptors continue to signal from intracellular compartments. In addition to rapid desensitization, receptor trafficking is critical for regulation of the temporal and spatial aspects of GPCR signaling. Indeed, GPCR internalization functions to control signal termination and propagation as well as receptor resensitization. Our knowledge of the mechanisms that regulate mammalian GPCR endocytosis is based predominantly on arrestin regulation of receptors through a clathrin- and dynamin-dependent pathway. However, multiple clathrin adaptors, which recognize distinct endocytic signals, are now known to function in clathrin-mediated endocytosis of diverse cargo. Given the vast number and diversity of GPCRs, the complexity of clathrin-mediated endocytosis and the discovery of multiple clathrin adaptors, a single universal mechanism controlling endocytosis of all mammalian GPCRs is unlikely. Indeed, several recent studies now suggest that endocytosis of different GPCRs is regulated by distinct mechanisms and clathrin adaptors. In this review, we discuss the diverse mechanisms that regulate clathrin-dependent GPCR endocytosis.  相似文献   

9.
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.  相似文献   

10.
11.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

12.
Lysophosphatidic acid (LPA) is an extracellular signaling lipid that regulates cell proliferation, survival, and motility of normal and cancer cells. These effects are produced through G protein-coupled LPA receptors, LPA(1) to LPA(5). We generated an LPA(1) mutant lacking the SerValVal sequence of the C-terminal PDZ-binding domain to examine the role of this domain in intracellular signaling and other cellular functions. B103 neuroblastoma cells expressing the mutant LPA(1) showed rapid cell proliferation and tended to form colonies under serum-free conditions. The enhanced cell proliferation of the mutant cells was inhibited by exogenous expression of the plasmids inhibiting G proteins including G(betagamma), G(alphai) and G(alphaq) or G(alpha12/13), or treatment with pertussis toxin, phosphoinositide 3-kinase (PI3K) inhibitors or a Rho inhibitor. We confirmed that the PI3K-Akt and Rho pathways were intrinsically activated in mutant cells by detecting increases in phosphorylated Akt in western blot analyses or by directly measuring Rho activity. Interestingly, expression of the mutant LPA(1) in non-tumor mouse fibroblasts induced colony formation in a clonogenic soft agar assay, indicating that oncogenic pathways were activated. Taken together, these observations suggest that the mutant LPA(1) constitutively activates the G protein signaling leading to PI3K-Akt and Rho pathways, resulting in enhanced cell proliferation.  相似文献   

13.
LPA2 receptor mediates mitogenic signals in human colon cancer cells   总被引:6,自引:0,他引:6  
Lysophosphatidic acid (LPA) is a mediator of multiple cellular responses. LPA mediates its effects predominantly through the G protein-coupled receptors LPA1, LPA2, and LPA3. In the present work, we studied LPA2-mediated signaling using human colon cancer cell lines, which predominantly express LPA2. LPA2 activated Akt and Erk1/2 in response to LPA. LPA mediated Akt activation was inhibited by pertussis toxin (PTX), whereas Erk1/2 activation was completely inhibited by a blocker of phospholipase Cbeta, U-73122. LPA also induced interleukin-8 (IL-8) synthesis in the colon cancer cells by primarily activating LPA2 receptor. We also found that LPA2 interacts with Na+/H+ exchanger regulatory factor 2 (NHERF2). Activation of Akt and Erk1/2 was significantly attenuated by silencing of NHERF2 expression by RNA interference, suggesting a pivotal role of NHERF2 in LPA2-mediated signaling. We found that expression of LPA2 was elevated, whereas expression of LPA1 downregulated in several types of cancers, including ovarian and colon cancer. We conclude that LPA2 is the major LPA receptor in colon cancer cells and cellular signals by LPA2 are largely mediated through its ability to interact with NHERF2.  相似文献   

14.
Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.  相似文献   

15.
16.
Glucagon and the glucagon-like peptides regulate metabolic functions via signaling through a glucagon receptor subfamily of G protein-coupled receptors. Activation of glucagon-like peptide-2 receptor (GLP-2R) signaling maintains the integrity of the intestinal epithelial mucosa via regulation of crypt cell proliferation. Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury. We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor. GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities. Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89. Similarly, GLP-2 increased cell survival following cycloheximide in the presence of the kinase inhibitors PD98054 and LY294002. These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.  相似文献   

17.
The serine/threonine kinase Akt, or protein kinase B (PKB), has recently been a focus of intense research. It appears that Akt/PKB lies in the crossroads of multiple cellular signaling pathways and acts as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI 3-kinase). Akt/PKB is particularly important in mediating several metabolic actions of insulin. Another major activity of Akt/PKB is to mediate cell survival. In addition, the recent discovery of the tumor suppressor PTEN as an antagonist of PI 3-kinase and Akt/PKB kinase activity suggests that Akt/PKB is a critical factor in the genesis of cancer. Thus, elucidation of the mechanisms of Akt/PKB regulation and its physiological functions should be important for the understanding of cellular metabolism, apoptosis, and cancer.  相似文献   

18.
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.  相似文献   

19.
The dbl oncogene product is the founding member of a large family of oncogenic proteins that function by activating the small GTP-binding proteins Cdc42, Rac and Rho. Through its substrate GTPases, Dbl transduces proliferative signals from cell-surface receptors to diverse cellular effectors and signaling pathways. The mechanisms by which these multiple signals are integrated, as well as their relative contribution to Dbl-induced cell transformation, are presently poorly understood. We investigated the role of the survival regulators PI3-kinase and Akt in Dbl-induced cell transformation. We found that Dbl induced the phosphorylation of Akt on threonine 308, through the GTPases Rac and Cdc42 and in a PI3-kinase dependent manner. Pharmacological or biochemical interference with this pathway lead to a marked, dose-dependent inhibition of the focus formation activity exhibited by Dbl-expressing cells. Dbl expression stimulated the phosphorylation of the anti-apoptotic Akt substrate Bad, and caused a marked decrease in basal levels of apoptosis. Finally, we found that activated Cdc42 existed in cells in complex with phosphoionositide-dependent kinase-1 (PDK1), the downstream mediator of PI3-kinase action. The data indicate that Dbl signaling stimulate the formation of a novel survival complex, through which anti-apoptotic signals are generated and propagated.  相似文献   

20.
The role of sphingosine-1-phosphate in smooth muscle contraction   总被引:9,自引:0,他引:9  
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that is known to mediate diverse cellular responses including cell growth, survival, and migration. Most of these effects have been attributed to its binding to a specific subfamily of G protein-coupled receptors (GPCR), namely S1P(1-5). Recent studies have suggested that S1P also plays a prominent role in the contraction of various types of smooth muscle. This review provides a brief overview of its role in this process and also highlights how S1P-dependent signaling serves as an important regulator of smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号