首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本研究的目的是探讨木犀草素体外抑制表皮生长因子(epidermal growth factor,EGF)诱导的乳腺癌细胞增殖的机制。MTT法检测了木犀草素对乳腺癌细胞MCF-7和MDA-MB-231增殖的影响以及木犀草素对EGF诱导的乳腺癌细胞MCF-7增殖的影响。Western blot法检测了木犀草素对EGF受体、磷脂酰肌醇3蛋白激酶(PI3K)/Akt、丝裂原活化蛋白激酶(MAPK)/Erk1/2及转录活化因子3(STAT3)蛋白表达的影响。结果显示,木犀草素能显著抑制乳腺癌细胞MCF-7和MDA-MB-231的增殖,但对MCF-7细胞的影响更显著,因此本文后续实验以MCF-7为研究对象。进一步研究结果显示,木犀草素对EGF诱导的MCF-7细胞增殖也有显著的抑制作用,Western blot结果表明,木犀草素和EGFR通路阻断剂AG1478均能抑制EGF诱导的EGF受体和STAT3蛋白磷酸化水平,木犀草素、Akt通路抑制剂LY294002以及Erk1/2通路阻断剂PD98059均能显著抑制EGF诱导的Akt和Erk1/2蛋白磷酸化水。以上结果揭示,木犀草素能抑制人乳腺癌细胞EGF信号通路,其中PI3K/Akt、MAPK/Erk1/2、STAT3信号通路是其发挥作用的主要下游信号转导通路。本实验结果为将木犀草素开发成新型抗乳腺癌药物提供了理论依据。  相似文献   

2.
本文分析了人肝癌细胞株7404,7721细胞中表皮生长因子受体(EGFR)基因表达和EGF对肝癌细胞生长的促进作用。~(125)Ⅰ-EGF对7404细胞的结合试验表明结合是可饱和的和专一的,从~(125)Ⅰ-EGF对7404、7721细胞结合浓度曲线作Scatchard作图和计算,提示每个7404和7721细胞表面分别有1.1×10~5和0.7×10~5的EGFR分子。Northern杂交分析证明EGFR基因在7404,7721细胞中的转录产物主要是5.6 kb EGFR mRNA,免疫印迹分析证明7404细胞和7721细胞的EGFR为170kd的蛋白。EGF对培养于含10%或0.5%小牛血清的RPMI-1640培液中的7404、7721细胞的贴壁依赖性生长有促进作用,促进作用的程度与培液中CS含量有一定关系,提示EGF的促生长作用可能是EGF与血清中其他成分协同作用的结果。EGF对培养于软琼脂中的7404,7721细胞的贴壁不依赖性生长也有明显促进作用。综合上述实验结果说明EGFR基因在人肝癌细胞中是活跃表达的,EGF可能是肝癌细胞生长依赖的一个重要有丝分裂原。  相似文献   

3.
本研究的目的是探讨木犀草素体外抑制表皮生长因子(epidermal growth factor,EGF)诱导的乳腺癌细胞增殖的机制。MTT法检测了木犀草素对乳腺癌细胞MCF-7和MDA-MB-231增殖的影响以及木犀草素对EGF诱导的乳腺癌细胞MCF-7增殖的影响。Western blot法检测了木犀草素对EGF受体、磷脂酰肌醇3蛋白激酶(PI3K)/Akt、丝裂原活化蛋白激酶(MAPK)/Erk1/2及转录活化因子3(STAT3)蛋白表达的影响。结果显示,木犀草素能显著抑制乳腺癌细胞MCF-7和MDA-MB-231的增殖,但对MCF-7细胞的影响更显著,因此本文后续实验以MCF-7为研究对象。进一步研究结果显示,木犀草素对EGF诱导的MCF-7细胞增殖也有显著的抑制作用,Western blot结果表明,木犀草素和EGFR通路阻断剂AG1478均能抑制EGF诱导的EGF受体和STAT3蛋白磷酸化水平,木犀草素、Akt通路抑制剂LY294002以及Erk1/2通路阻断剂PD98059均能显著抑制EGF诱导的Akt和Erk1/2蛋白磷酸化水。以上结果揭示,木犀草素能抑制人乳腺癌细胞EGF信号通路,其中PI3K/Akt、MAPK/Erk1/2、STAT3信号通路是其发挥作用的主要下游信号转导通路。本实验结果为将木犀草素开发成新型抗乳腺癌药物提供了理论依据。  相似文献   

4.
目的:在二氧化硅(SiO2)刺激下可引起肺部一系列的炎症反应及其伴随相关的成纤维细胞增殖,然而EGFR信号通路可维持细胞增殖、分化和凋亡的平衡,因此,我们可以设想EGFR信号通路是否在肺纤维化的发生发展中起到重要的作用。本实验探讨SiO2是否能诱导人肺上皮细胞(A549)发生上皮间质转化,并且研究EGFR信号通路在矽肺纤维化中的作用机制。方法:以A549为研究对象,用0(对照组)、50、100、200μg/ml SiO2孵育A549,作用48h后于倒置显微镜观察细胞形态学改变,并收集不同时段细胞,采用实时荧光定量PCR(RT-PCR)检测E-钙黏蛋白(E-cadherin)和α-平滑肌肌动蛋白(α-SMA)mRNA表达变化,细胞免疫荧光方法检测E-cadherin、α-SMA及信号转导蛋白EGFR表达的变化。结果:倒置显微镜观察A549经SiO2处理后细胞形态由鹅卵石状转变为纺锤型或梭型,形态似成纤维细胞,随着SiO2浓度的升高,E-cad mRNA和蛋白表达逐渐下调,在200μg/ml组表达最低,α-SMA mRNA和蛋白表达逐渐上调,200μg/ml组α-SMA表达最高;EGFR蛋白表达上调;50、100、200μg/ml与对照组的差异具有统计学学意义(P0.05)。结论:SiO2可诱导肺上皮细胞向间质细胞转化,其机制可能与EGFR信号通路有关。关键词:表皮生长因子受体;矽尘;A549细胞;上皮间质转化  相似文献   

5.
利用原子力显微镜(AFM)、透射电镜(TEM)、圆二色谱仪(CD)等手段,研究了家蚕丝素纤维及丝素蛋白的形态结构,并尝试通过改变丝素蛋白溶液的酸碱性来观测其形态变化。结果表明,丝素纤维表面有许多沟槽和条纹,具有原纤结构特征;许多直径为20~50nm的圆形或椭圆形颗粒分子形成丝素蛋白的微观形态。在不同的酸碱条件下,球状颗粒分子具有不同的聚集方式,形成不同的微观形态。  相似文献   

6.
该文探讨肿瘤坏死因子α(TNFα)活化信号转导和转录激活因子3(STAT3)的分子机制。采用流式细胞术(FACS)检测TNF受体TNFR1在鼻咽癌细胞5-8F和宫颈癌细胞HeLa中的蛋白表达水平;qRT-PCR检测TNFα对其受体TNFR1和TNFR2的mRNA水平的影响;ELISA检测细胞因子白细胞介素8(IL-8)的蛋白水平;Western blot检测受体和信号转导分子的总蛋白水平及蛋白磷酸化水平。结果显示,5-8F和HeLa细胞表达功能性的TNF受体和表皮生长因子受体(EGFR);TNFα处理细胞可诱导STAT3的活化,且呈时间和剂量依赖性;TNFα也能活化EGFR,用EGFR的抑制剂进行处理,逆转了TNFα诱导的EGFR(Y1068)的磷酸化,也逆转了STAT3的磷酸化;进一步研究结果显示,TNFα可活化促癌酪氨酸蛋白激酶SRC,用SRC抑制剂处理,逆转了TNFα诱导的EGFR活化及其下游STAT3的磷酸化。总之,在肿瘤细胞中存在TNFα-SRC-EGFR-STAT3信号转导通路,提示EGFR可能是炎症诱导肿瘤的桥梁。  相似文献   

7.
表皮生长因子受体(EGFR)是细胞内多种信号调节通路的交汇点,其介导的信号通路与乳腺癌的发生、发展、转移和侵袭等密切相关,已成为乳腺癌治疗的新靶点之一。但目前关于秦皮素的抗乳腺癌作用与EGFR通路的关系,国内外尚未见相关报道。本研究结果表明,秦皮素能够通过抑制EGFR及其下游的AKT信号通路来发挥其抗乳腺癌作用。秦皮素在体外可促进T、B 淋巴细胞增殖及巨噬细胞吞噬能力,提示秦皮素可能促进小鼠免疫功能。Western印迹结果表明,秦皮素能显著抑制EGFR蛋白及其下游的AKT蛋白磷酸化水平。划痕实验结果表明,秦皮素能抑制MCF-7细胞的迁移。此外,秦皮素还能促进小鼠巨噬细胞的吞噬能力和代谢活力,促进T、B淋巴细胞的增殖,提高NK细胞的杀伤活力。本研究结果提示,秦皮素的抗乳腺癌作用是通过抑制EGFR信号通路,抑制MCF-7细胞迁移和促进小鼠的免疫功能等多种途径来实现的。  相似文献   

8.
本文研究了EGF、PTH和RA对UMR106细胞EGF受体的调节作用。结果显示PTH能上调EGF的受体,UMR106细胞经bPTH(1-34)处理3天,EGF受体的相对结合率与对照比较提高了40.3%,每个细胞的EGF受体数目从7.22×10~3增加到1.44×10~4,Kd从2.02×10~(-11)增加到3.68×10~(-11)mol/L。而RA则能下调EGF受体,以RA处理3天,EGF受体数目从7.22×10~3下降到4.28×10~3,Kd则从2.02×10~(-11)增加到4.17×10~(-11)mol/L。提示PTH和RA可能通过调变其EGF受体而分别起到正性和负性生长调节作用。  相似文献   

9.
目的:探讨原癌基因c-erbB2在原始卵泡启动生长中表达变化及可能的作用。方法:选用2日龄SD大鼠卵巢在Waymouth培养体系中进行体外培养,用原位杂交、RT-PCR和免疫组化方法检测c-erbB2mRNA和蛋白在原始卵泡启动生长中及在表皮生长因子(EGF)作用下的表达情况,用Westernblot方法同步测定卵泡活化生长的重要标志物——增殖细胞核抗原(PCNA)和磷酸化细胞外信号调节激酶1/2(p-ERK1/2)的表达情况,并分析p-ERK1/2与c-erbB2mRNA表达变化的相关关系。结果:伴随原始卵泡启动生长过程,PCNA表达逐渐增加,EGF能促进原始卵泡的增殖和分化;原始卵泡中有c-erbB2mRNA及蛋白的表达,且随原始卵泡的启动生长及在EGF作用下表达增强;RT-PCR结果显示,c-erbB2mRNA表达在2日龄大鼠卵巢培养8d后与培养0d相比显著增加(0.297±0.018vs0.178±0.011,P0.05),并在EGF作用下进一步增强;p-ERK1/2含量的变化与c-erbB2mRNA表达的变化呈显著的正相关关系(rs=0.900,P0.05)。结论:c-erbB2在原始卵泡启动生长中起重要促进作用,并为介导EGF促进原始卵泡启动生长的关键信号分子;ERK-MAPK信号通路可能在介导c-erbB2调控原始卵泡生长中起作用。  相似文献   

10.
乳腺癌是女性中常见的恶性肿瘤之一.乳腺癌的发生、发展、转移及耐药性的产生与细胞内的信号通路密切相关,其中雌激素受体(estrogen receptor,ER)信号通路、胰岛素样生长因子受体(insulin-like growth factor receptor,IGFR)信号通路和表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路尤为重要.深入了解ER、IGFR和EGFR三条信号通路的作用机制及它们之间的交叉对话对于寻找新的更有效的肿瘤治疗靶点至关重要.本文综述了近年来有关ER、IGFR和EGFR三条信号通路研究进展及这三条通路与乳腺癌关系.  相似文献   

11.
Jia C  Zhou Z  Liu R  Chen S  Xia R 《Bioelectromagnetics》2007,28(3):197-207
Atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy were used to investigate the effects of a 50 Hz 0.4 mT magnetic field (MF) on the clustering of purified epidermal growth factor receptors (EGFRs) and EGFRs in Chinese hamster lung (CHL) cell membrane. The results demonstrate that exposing purified EGFRs to the MF for 30 min induces receptor clustering. The peak height of apparent clusters increased from 1.42 +/- 0.18 (sham-exposed) to 3.08 +/- 0.38 nm (exposed) while the mean half-width increased from 21.7 +/- 2.2 to 33.0 +/- 4.0 nm. A similar effect was also observed by TEM. Treatment of purified EGFR with PD153035 (PD), an EGFR-specific tyrosine kinase (TK) inhibitor, inhibited the MF-induced EGFR clustering of the purified proteins, an effect also observed for the receptors in cell membrane in the absence of EGF. These results strongly suggest that the 50 Hz 0.4 mT MF interferes with the EGFR signaling pathway, most likely by interacting with the cytoplasmic TK domain.  相似文献   

12.
The atomic force microscope (AFM) and the transmission electron microscope (TEM) have been used to study the morphology of isolated mouse thymocyte microdomains and Thy-1 antigen distribution at the surface of these structures. AFM images were recorded in air in the contact mode on membrane vesicles deposited on previously heated tissue culture plastic sheets and indirectly immunolabeled for Thy-1 expression with colloidal gold-conjugated secondary antibodies. AFM images of untreated plastic plates showed a very characteristic network of streaks 20-200 nm wide. Heating the plastic removed the streaks and provided flat surfaces (r.m.s. 1 nm). This substrate allowed strong adsorption and homogeneous spreading of the vesicles and easy manipulations during immunolabeling experiments. Vesicles flattened on the substrate without losing their morphology. The 10-nm membrane-bound gold beads were reproducibly imaged without degradation by repeated tip scanning. The observed microdomains had a mean diameter of 184 +/- 76 nm, and 65% of them were specifically labeled. Images obtained with the TEM on the same vesicles, deposited on carbon-coated grids and negatively stained, confirmed the AFM observations. The size distribution of the microdomains was quite similar, but the number of beads per vesicle was significantly higher, and 76% of the vesicles were labeled. The difference may be explained 1) by removal of beads from the vesicles in the additional washing step with water, which was necessary for the AFM; 2) by tip-sample convolution; and 3) by statistical fluctuations.  相似文献   

13.
To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly.  相似文献   

14.
Magnetic single-enzyme nanoparticles (SENs) encapsulated within a composite inorganic/organic polymer network were fabricated via the surface modification and in situ aqueous polymerization of separate enzyme molecule. The resultant nanoparticles were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrometer and X-ray diffraction (XRD). These particles are almost spherical in shape and have a unique size of about 50 nm in diameter. Electrical and magnetic measurements reveal that the magnetic SENs have a conductivity of 2.7 × 10−3 S cm−1, and are superparamagnetic with a saturation magnetization of 14.5 emu g−1 and a coercive force of 60 Oe. Compared with free enzyme, encapsulated enzyme exhibits a strong tolerance to the variation of solution pH, high temperature, organic solvent and long-term storage, thus showing significantly enhanced enzyme performance and stability.  相似文献   

15.
The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.KEY WORDS: atomic force microscopy, calorimetry (DSC), FTIR, particle size, solid lipid nanoparticles  相似文献   

16.
Previously, we found that exposure to a 50-Hz magnetic field (MF) could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell surface. In order to explore the possible mechanisms, the roles of acid sphingomyelinase (ASMase) and lipid raft in MF-induced EGFR clustering were investigated in the present study. Human amnion epithelial (FL) cells were exposed to a 50-Hz MF at 0.4?mT for different durations. Intracellular ASMase activity was detected using the Amplex® Red Sphingomyelinase Assay Kit. EGFR clustering, ASMase, and lipid rafts on cell membrane were analyzed using confocal microscopy after indirect immunofluorescence staining. Results showed that disturbing lipid rafts with nystatin could inhibit MF-induced EGFR clustering, indicating that it was dependent on intact lipid raft. Exposure of FL cells to MF significantly enhanced ASMase activity and induced ASMase translocation to membrane that co-localized with lipid rafts. Treatment with imipramine, an ASMase inhibitor, inhibited the MF-induced EGFR clustering. This inhibitory effect could be blocked by the addition of C2-ceramide in the culture medium. It suggested that ASMase mediated the 50-Hz MF-induced EGFR clustering via ceramide which was produced from hydrolyzation on lipid rafts.  相似文献   

17.
Summary Junctional conductance between the epidermal cells of the beetle Tenebrio molitor is raised after exposure to the hormone 20-hydroxyecdysone and lowered reversibly by exposure to chlorpromazine. Gap Junctional particle size, density and arrangement associated with these conductance changes were studied. We found no significant difference in particle density in gap junctions of control (2456±471 particles/m2, mean ±S.D.) and hormone-treated epidermis (2490±315); however, a significant increase in packing density occurred in chlorpromazine-uncoupled epidermis (3133±665). The particles are randomly arranged in all three states of conductance. Particle size measurements show that the E-face gap junctional particles are heterogeneous with a mean diameter ±S.D. of 15.2±2.0 nm. No significant difference in particle size between controls and experimentals was detected. Although glutaraldehyde irreversibly uncoupled these cells, the absence of glutaraldehyde fixation but presence of glycerol induced marked alterations in the appearance of the gap junctions such that quantification was no longer possible. From this particle-packing data and our previous thin-section data, we estimate that there are 90000 gap junctional particles per cell (within junctional plaques). The conductance of a single gap junctional channel (assuming one population) changes from 94 pS to 213 pS after hormone treatment.  相似文献   

18.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

19.
Fe3O4 magnetic nanoparticles with different particle sizes were synthesized using two methods, i.e., a co-precipitation process and a polyol process, respectively. The atomic pair distribution analyses from the high-energy X-ray scattering data and TEM observations show that the two kinds of nanoparticles have different sizes and structural distortions. An average particle size of 6–8 nm with a narrow size distribution was observed for the nanoparticles prepared with the co-precipitation method. Magnetic measurements show that those particles are in ferromagnetic state with a saturation magnetization of 74.3 emu g−1. For the particles synthesized with the polyol process, a mean diameter of 18–35 nm was observed with a saturation magnetization of 78.2 emu g−1. Although both kinds of nanoparticles are well crystallized, an obviously higher structural distortion is evidenced for the co-precipitation processed nanoparticles. The synthesized Fe3O4 particles with different mean particle size were used for treating the wastewater contaminated with the metal ions, such as Ni(II), Cu(II), Cd(II) and Cr(VI). It is found that the adsorption capacity of Fe3O4 particles increased with decreasing the particle size or increasing the surface area. While the particle size was decreased to 8 nm, the Fe3O4 particles can absorb almost all of the above-mentioned metal ions in the contaminated water with the adsorption capacity of 34.93 mg/g, which is ∼7 times higher than that using the coarse particles. We attribute the extremely high adsorption capacity to the highly-distorted surface.  相似文献   

20.
This is the first report on the derivation and structures of cellulose nanocrystals from grape skins. Pure cellulose was isolated from chardonnay grape skins at a 16.4% yield by a process involving organic extraction, acid and base dissolutions, and basic and acidic oxidation. The as-extracted cellulose was 54.9% crystalline and microfibrillar. Acid hydrolysis (64-65% H2SO4 45 °C, 30 min) of grape skin cellulose produced the more crystalline (64.3%) cellulose nanocrystals (CNCs) that appeared mostly as spherical nanoparticles with diameters ranging from 10 to 100 nm and a mean diameter of 48.1 (±14.6) nm as observed by TEM. AFM further disclosed the spherical nanoparticles actually consist of a nano-rod core (seed) surrounded by numerous tiny cellulose fragments as the shell. Interestingly, the spherical core-shell nanoparticles resemble the shape of grape bundles, the starting biomass, may be assembled via interfacial hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号