首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Many ascidian oocytes undergo 'spontaneous' germinal vesicle breakdown (GVBD) when transferred from the ovary to normal pH 8.2 sea water (SW); however, low pH inhibits GVBD, which can then be stimulated while remaining in the low pH SW. Oocytes of Boltenia villosa blocked from GVBD by pH 4 SW undergo GVBD in response to permeant cyclic AMP (8-bromo-cyclic AMP), phosphodiesterase inhibitors (isobutylmethylxanthine and theophylline) or the adenylyl cyclase activator forskolin. This suggests that cAMP increases during GVBD. Removal of the follicle cells or addition of a protease inhibitor inhibits GVBD in response to raised pH but not to forskolin, theophylline or 8 bromo-cAMP. Isolated follicle cells in low pH SW release protease activity in response to an increase in pH. These studies imply that the follicle cells release protease activity, which either itself stimulates an increase in oocyte cAMP level or reacts with other molecules to stimulate this process. Studies with the mitogen-activated protein (MAP) kinase inhibitors U0126 and CI 1040 suggest that MAP kinase is not involved in GVBD. The Cdc25 inhibitor NSC 95397 inhibits GVBD at 200 n m in a reversible manner.  相似文献   

2.
In the nemertean worms Cerebratulus lacteus and Micrura alaskensis, 5-HT (=5-hydroxytryptamine, or serotonin) causes prophase-arrested oocytes to mature and complete germinal vesicle breakdown (GVBD). To identify the intracellular pathway that mediates 5-HT stimulation, follicle-free oocytes of nemerteans were assessed for GVBD rates in the presence or absence of 5-HT after being treated with various modulators of cAMP, a well known transducer of 5-HT signaling and an important regulator of hormone-induced maturation in general. Unlike in many animals where high levels of intra-oocytic cAMP block maturation, treatment of follicle-free nemertean oocytes with agents that elevate cAMP (8-bromo-cAMP, forskolin or inhibitors of phosphodiesterases) triggered GVBD in the absence of added 5-HT. Similarly, 5-HT caused a substantial cAMP increase prior to GVBD in nemertean oocytes that had been pre-injected with a cAMP fluorosensor. Such a rise in cAMP seemed to involve G-protein-mediated signaling and protein kinase A (PKA) stimulation, based on the inhibition of 5-HT-induced GVBD by specific antagonists of these transduction steps. Although the downstream targets of activated PKA remain unknown, neither the synthesis of new proteins nor the activation of MAPKs (mitogen-activated protein kinases) appeared to be required for GVBD after 5-HT stimulation. Alternatively, pre-incubation in roscovitine, an inhibitor of maturation-promoting factor (MPF), prevented GVBD, indicating that maturing oocytes eventually need to elevate their MPF levels, as has been documented for other animals. Collectively, this study demonstrates for the first time that 5-HT can cause immature oocytes to undergo an increase in cAMP that stimulates, rather than inhibits, meiotic maturation. The possible relationship between such a form of oocyte maturation and that observed in other animals is discussed.  相似文献   

3.
In the marine nemertean worm Cerebratulus, follicle‐free oocytes re‐initiate meiosis and undergo nuclear disassembly (=germinal vesicle breakdown, GVBD) after being stimulated to mature by seawater (SW) or cAMP‐elevating drugs. Previously, it has been shown that inhibitors of mitogen‐activated protein kinase (MAPK) or protein kinase C (PKC) signaling can reduce SW‐induced GVBD in nemertean oocytes without affecting cAMP‐induced GVBD. Thus, SW and cAMP elevators may trigger alternative pathways that vary in their dependence on MAPK and PKC. To further characterize such signaling cascades, immunoblotting analyses of MAPK and PKC activities were conducted on oocytes treated with U0126, an inhibitor of the MAPK kinase (MAPKK) that is responsible for activating MAPK. Based on these analyses and comparisons with the MAPKK inhibitor CI1040 that inactivates MAPK without preventing GVBD, U0126 seems to block GVBD via a non‐MAPK‐mediated effect that involves PKC. Moreover, evidence is presented for post‐GVBD oocytes establishing positive feedback between MAPK and PKC signaling. Such feedback apparently allows the activities of both kinases to be maintained before insemination and to undergo concomitant downregulation after fertilization. Furthermore, in oocytes treated with MAPKK and PKC inhibitors during fertilization, sperm incorporation and polar body formation still occur, but normal cleavage is prevented. This suggests that although GVBD and aspects of post‐fertilization activation may proceed in the absence of MAPK or PKC, such kinases are apparently required for proper embryogenesis. Collectively, these results are discussed relative to previous analyses of the interactions and functions of MAPK and PKC signaling during oocyte maturation and fertilization. Mol. Reprod. Dev. 76: 708–721, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Instead of blocking oocyte maturation as it does in most animals, cAMP causes oocytes of marine nemertean worms to initiate maturation (=germinal vesicle breakdown, "GVBD"). To characterize cAMP-induced GVBD in nemerteans, inhibitors of tyrosine kinase signaling were tested on Cerebratulus sp. oocytes that had been incubated in cAMP-elevating drugs versus seawater (SW) alone. Such tests yielded similar results for Src-like tyrosine kinase blockers, as the inhibitors prevented mitogen-activated protein kinase (MAPK) activation without stopping either GVBD or maturation-promoting factor (MPF) activation in both SW and cAMP-elevating treatments. Alternatively, genistein, a general tyrosine kinase antagonist, and piceatannol, an inhibitor of the tyrosine kinase Syk, reduced GVBD and MAPK/MPF activities in SW-, but not cAMP-induced maturation. Similarly, inhibitors of the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase prevented GVBD and MAPK/MPF activations in oocytes treated with SW, but not with cAMP-elevating drugs. Antagonists of either protein tyrosine phosphatases (PTPs) or the dual-specificity phosphatase Cdc25 also reduced GVBD and MAPK/MPF activities in SW-treated oocytes without generally affecting cAMP-induced maturation. Collectively, these data suggest cAMP triggers GVBD via pathways that do not require MAPK activation or several components of tyrosine kinase signaling. In addition, such differences in tyrosine kinase cascades, coupled with the dissimilar patterns of Ser/Thr kinase signaling described in the accompanying study, indicate that nemertean oocytes are capable of utilizing multiple mechanisms to activate MPF during GVBD.  相似文献   

5.
Previous studies have shown that elevations in intraoocytic cAMP prevent mammalian oocytes from maturing, whereas cAMP degradation allows these oocytes to begin maturation, as evidenced by the onset of oocyte nuclear disassembly (=“germinal vesicle breakdown”, GVBD). Moreover, such cAMP degradation not only reduces cAMP levels but also generates AMP, which in turn can stimulate AMP‐activated kinase (AMPK), a well‐documented inducer of GVBD in mice. Alternatively, in some marine invertebrates, intraoocytic cAMP triggers, rather than blocks, GVBD, and whether AMPK up‐ or downregulates maturation in these species has not been tested. Thus, AMPK was monitored in the nemertean worm Cerebratulus during GVBD stimulated by seawater (SW) or cAMP elevators. In oocytes lacking surrounding follicle cells, AMPK activity was initially elevated in immature oocytes but subsequently reduced during SW‐ or cAMP‐induced GVBD, given that the catalytic α‐subunit of AMPK in maturing oocytes displayed a decreased stimulatory phosphorylation at T172 and an increased inhibitory phosphorylation at S485/491. Accordingly, AMPK‐mediated phosphorylation of acetyl‐CoA carboxylase, a known target of active AMPK, also declined during maturation. Moreover, treatments with either ice‐cold calcium‐free seawater (CaFSW) or AMPK agonists dissolved in SW maintained AMPK activity and inhibited GVBD. Conversely, adding cAMP elevators to CaFSW‐ or SW‐solutions of AMPK activators restored GVBD while promoting S485/491 phosphorylation and AMPK deactivation. Collectively, such findings not only demonstrate for the first time that intraoocytic AMPK can block GVBD in the absence of surrounding follicle cells, but these results also provide evidence for a novel GVBD‐regulating mechanism involving AMPK deactivation by cAMP‐mediated S485/491 phosphorylation. Mol. Reprod. Dev. 77: 497–510, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Unlike in most animals, oocytes of marine nemertean worms initiate maturation (=germinal vesicle breakdown, GVBD) following an increase, rather than a decrease, in intraoocytic cAMP. To analyze how serine/threonine (Ser/Thr) kinase cascades involving mitogen-activated protein kinase (MAPK), maturation-promoting factor (MPF), cAMP-dependent protein kinase (PKA), and phosphatidylinositol 3-kinase (PI3K) regulate nemertean GVBD, oocytes of Cerebratulus sp. were treated with pharmacological modulators and stimulated with cAMP-elevating drugs or seawater (SW) alone. Both cAMP elevators and SW triggered GVBD while activating MAPK, its target p90Rsk, and MPF. Similarly, neither cAMP- nor SW-induced GVBD was affected by several Ser/Thr phosphatase inhibitors, and both stimuli apparently accelerated GVBD via a MAPK-independent, PI3K-dependent mechanism. However, inhibitors of Raf-1, a kinase that activates MAPK kinase, blocked GVBD and MAPK activation during SW-, but not cAMP-induced maturation. In addition, MPF blockers more effectively reduced GVBD and MAPK activity in SW versus in cAMP-elevating treatments. Moreover, the two maturation-inducing stimuli yielded disparate patterns of PKA-related MAPK activations and phosphorylations of putative PKA substrates. Collectively, such findings suggest that in maturing oocytes of Cerebratulus sp., Ser/Thr kinase cascades differ during cAMP- versus SW-induced GVBD in several ways, including MAPK activation modes, MPF-feedback loops, and PKA-related signaling pathways. Additional differences in cAMP- versus SW-induced oocyte maturation are also described in the accompanying study that deals with the roles of tyrosine kinase signaling during GVBD.  相似文献   

7.
Based on immunoblotting analyses using phospho‐specific antibodies, follicle‐free oocytes of the marine nemertean worm Cerebratulus sp. activate protein kinase C (PKC) when induced to mature by either seawater (SW) or cAMP‐elevating drugs. In SW‐stimulated oocytes, the onset of maturation (=germinal vesicle breakdown, “GVBD”) can be inhibited by broadly acting PKC antagonists such as bisindoylmaleimide (BIM)‐I or BIM‐IX. Conversely, co‐treatment with SW solutions of BIM‐I or BIM‐IX plus a cAMP elevator (forskolin, serotonin, or a phosphodiesterase inhibitor) restores GVBD, indicating that the blockage of SW‐induced GVBD by PKC antagonists is not simply due to oocyte morbidity and that such inhibition is somehow reversible by cAMP signaling. In tests to determine which specific PKC may be involved in regulating GVBD, immunoblots fail to provide strong evidence for the presence of conventional or novel PKCs, which are characteristically activated by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA). Moreover, inhibitors of TPA‐sensitive PKCs do not prevent SW‐induced GVBD, and TPA itself serves to downregulate, rather than stimulate, GVBD. Alternatively, maturing oocytes apparently possess phosphorylated forms of TPA‐insensitive isotypes, including an ~67‐kDa atypical PKC and an ~130‐kDa PKC‐related kinase (PRK). Accordingly, inhibitors of atypical PKC signaling block SW‐but not cAMP‐induced GVBD, collectively suggesting that instead of depending on a conventional or novel isotype, SW‐induced GVBD may require atypical PKC and/or PRK. In addition, such findings provide further support for the view that GVBD in nemertean oocytes can be achieved via multiple mechanisms, with SW triggering different signaling pathways than are stimulated in the presence of cAMP‐elevating drugs. Mol. Reprod. Dev. 76: 693–707, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The Ascidiacea, the invertebrate chordates, includes three orders; the Stolidobranchia is the most complex. Until the present study, the onset of oocyte maturation (germinal vesicle breakdown) had been investigated in only a single pyurid (Halocynthia roretzi), in which germinal vesicle breakdown (GVBD) begins when the oocyte contacts seawater (SW); nothing was known about internal events. This study strongly suggests the importance of protein phosphorylation in this process. Herdmania pallida (Pyuridae) functions like H. roretzi; GVBD occurs in SW. Oocytes of Cnemidocarpa irene (Styelidae) do not spontaneously undergo GVBD in SW but must be activated. Herdmania oocytes are inhibited from GVBD by pH 4 SW and subsequently activated by mastoparan (G-protein activator), A23187 (Ca2+ ionophore) or dimethylbenzanthracene (tyrosine kinase activator). This requires maturation promoting factor (MPF) activity; cyclin-dependent kinase inhibitors roscovitine and olomoucine are inhibitory. It also entails dephosphorylation as demonstrated by the ability of the phosphatase inhibitor vitamin K3 to inhibit GVBD. GVBD is also inhibited by the tyrosine kinase inhibitors tyrphostin A23 and genistein, and LY-294002, a phosphatidylinositol-3-kinase inhibitor previously shown to inhibit starfish GVBD. LY-294002 inhibits strongly when activation is by mastoparan or ionophore but not when activated by dimethylbenzanthracene (DMBA). The DMBA is hypothesized to phosphorylate a phosphatase directly or indirectly causing secondary activation, bypassing inhibition.  相似文献   

9.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

10.
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.  相似文献   

11.
The influence of ryanodine and inositol triphosphate receptors inhibitors on Ca2+ exit from intracellular stores of porcine oocytes stimulated by prolactin and GTP was investigated using fluorescent dye chlortetracycline. Porcine oocytes were isolated from ovaries with yellow body. Ca2+ exit from intracellular stores of porcine oocytes activated by prolactin (5 and 50 ng/ml) in calcium free medium was decreased after treatment of oocytes by heparin (inhibitor of inositol triphosphate receptors) and was not changed after treatment of oocytes by ruthenium red (inhibitor of ryanodine receptors). Inhibition of protein kinase C did not affect on the Ca2+ exit stimulated by prolactin. GTP did not stimulate Ca2+ exit from intracellular stores of pig oocytes, and inhibitors of both calcium channels and proteinkinase C had no influence on this process. The joint action of prolactin and GTP did not result in additional Ca2+ exit from intracellular stores of oocytes after both pretreatment and untreatment by the inhibitor of protein kinase C. The data obtained testify to activation of IP3-sensitive receptors under effect of prolactin and in the absence of GTP influence on these receptors.  相似文献   

12.
We have examined the possible involvement of protein kinase C (C-kinase) in the initiation of germinal vesicle breakdown (GVBD) in Chaetopterus oocytes. Two tumor-promoting phorbol esters (phorbol-12, 13-dibezoate and 12-0-tetradecanoylphorbol-13-acetate [TPA]) and a permeant diacylglycerol (1-oleoyl-2-acetylglycerol), potent activators of C-Kinase, triggered GVBD. Two other phorbol esters (phorbol-13-monoacetate and 4α-phorbol-12, 13-didecanoate), which do not activate C-kinase, were inactive. Three C-kinase antagonists (W-7, H-7 and retinol) inhibited both naturally-and TPA-induced GVBD, whereas W–5, a much less inhibitory W–7 analog, had no effect on GVBD. Triggering of GVBD by TPA was independent of extracellular Ca2+. Although naturally-induced GVBD was blocked by micromolar concentrations of the calmodulin antagonist, calmidazolium (R24571), and by millimolar concentrations of the permeant cAMP analog, dibutryryl cAMP, TPA-induced GVBD was not affected by these agents. These results support the hypothesis that both C-kinase and calmodulin are involved in the sequence of events leading to GVBD in this species.  相似文献   

13.
Specific changes in the two-dimensional gel electrophoretic pattern of mouse oocyte phosphoproteins precede germinal vesicle breakdown (GVBD). We report that changes in the relative abundance of phosphoamino acids occurred prior to GVBD. We also report data that further strengthen the close association of the changes in phosphoprotein patterns with resumption of meiosis. The calmodulin antagonist W7, which transiently inhibits GVBD, inhibited partially at least two of the maturation-associated phosphoprotein changes, the dephosphorylation of a 60,000 Mr phosphoprotein and the phosphorylation of a 36,000 Mr protein. In oocytes from juvenile mice that were incompetent to resume meiosis, neither these changes nor the phosphorylation of proteins of Mr 24,000 and 28,000 occurred; all these changes occurred, however, in oocytes from juvenile mice that were competent to resume meiosis. The microinjection of the heat-stable inhibitor of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKI), which induces GVBD in fully grown oocytes, did not induce GVBD in meiotically incompetent oocytes. Microinjected PKI did not induce the increased protein phosphorylations associated with maturation, but it did induce the dephosphorylation of the 60,000 Mr phosphoprotein. These results provide molecular markers for commitment to resume meiosis in GV-intact oocytes and indicate a potential basis for meiotic incompetence.  相似文献   

14.
Cyclopiazonic acid (CPA), a potent inhibitor of endogenous calcium-dependent ATPases, is able to induce parthenogenetic activation in pig oocytes matured in vitro. Sixty-four percent of matured pig eggs cultured with 100 nM CPA for 4 hr were activated. A similar activation rate was observed in oocytes treated with thapsigargin, another inhibitor of calcium-dependent ATPases. The parthenogenetic development of CPA-activated eggs did not proceed beyond the 8-cell stage. The blockage of calcium channels by verapamil only slightly decreased the proportion of CPA-activated pig oocytes. This indicates that the release of calcium from intracellular stores is sufficient for oocyte activation and calcium influx from extracellular sources has no significant role. The significant decrease in CPA-activated oocytes (100 nM of CPA for 4 hr) after a microinjection of heparin indicated that the mobilization of intracellular calcium stores is mediated through inositol trisphosphate receptors. On the other hand, the only slightly depressed activation rate in oocytes microinjected with ruthenium red and procaine indicates that CPA mobilizes a much smaller amount of calcium through the ryanodine receptors. The marked inhibitory effect of ophiobolin A and W7 on the activation of CPA-treated pig oocytes suggests that the calcium signal, as the second messenger, acts downstream through calmodulin. J. Exp. Zool. 287:304-315, 2000.  相似文献   

15.
SYNOPSIS. The large (26 kDa) prothoracicotropic hormone of Manducasexta stimulates ecdysteroid secretion by the prothoracic glandsthrough the action of cyclic AMP (cAMP). Adenylate cyclase inthe prothoracic glands is sensitive to calcium/calmodulin, andenhancement of intracellular calcium levels may be the meansby which PTTH stimulates cAMP synthesis. The cyclic nucleotidein turn activates cAMP-dependent protein kinase and proteinphosphorylation, most notably of a 34 kDa membraneassociatedprotein. It does not appear that protein kinase C plays a rolein the acute action of PTTH, nor has the hormone been foundto stimulate formation of inositol trisphosphate undercurrentassay conditions. PTTH rapidly increases protein synthesis bythe prothoracic glands, and translation inhibitors block PTTH-stimulatedecdysteroid secretion. Connections between protein phosphorylation,protein synthesis, and ecdysone secretion remain to be clarified.  相似文献   

16.
Following its production by adenylyl cyclases, the second messenger cAMP is in involved in pleiotrophic signal transduction. The effectors of cAMP include the cAMP-dependent protein kinase (PKA), the guanine nucleotide exchange factor Epac (exchange protein activated by cAMP), and cAMP-dependent ion channels. In turn, cAMP signaling is attenuated by phosphodiesterase-catalyzed degradation. The association of cAMP effectors and the enzymes that regulate cAMP concentration into signaling complexes helps to explain the differential signaling initiated by members of the G(s)-protein coupled receptor family. The signal transduction complex formed by the scaffold protein mAKAP (muscle A kinase-anchoring protein) at the nuclear envelope of both striated myocytes and neurons contains three cAMP-binding proteins, PKA, Epac1, and the phosphodiesterase PDE4D3. In addition, the mAKAP complex also contains components of the ERK5 MAP kinase signaling pathway, the calcium release channel ryanodine receptor and the phosphatases PP2A as well as calcineurin. Analysis of the mAKAP complex illustrates how a macromolecular complex can serve as a node in the intracellular signaling network of cardiac myocytes to integrate multiple cAMP signals with those of calcium and MAP kinases to regulate the hypertrophic actions of several hormones.  相似文献   

17.
To determine the role of calcium and calmodulin in mouse oocyte maturation, we examined the distribution of intracellular calcium during mouse oocyte maturation by using Mira Cal Imaging System. The calcium was present homogeneously in oocytes with intact germinal vesicle (GV) and accumulated around the nuclear region after GV breakdown(GVBD). The high level of calcium disappeared 6 hours later after GVBD. In the presence of 50 mumol/L BAPTA/AM, we failed to observe this phenomena. All eggs treated with 20 mumol/L W7, an antagonist of calmodulin, 50 mumol/L BAPTA/AM, a calcium chelator, could not develop to metaphase II (MII), although GVBD was not affected. We also detected the activity of a cytoplasmic maturation-promoting factor (MPF). W7 and BAPTA/AM had no effects on the rise of MPF activity in the course of maturation. We suggest that compartment distribution of calcium around nuclear region plays an important role in mouse oocyte maturation.  相似文献   

18.
The results of the present study demonstrate the probable involvement of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in the regulation of oocyte maturation in the catfish, Clarias batrachus. A decrease in total PKA activity with a concomitant increase in the percentage of germinal vesicle breakdown (GVBD) was found in oocytes treated with different doses of N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide (H-89), a selective, potent inhibitor of PKA and 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), the natural maturation-inducing steroid of this catfish. Evaluation of time-course of response to H-89 and 17 alpha, 20 beta-DP revealed that PKA activity decreased, and incidence of GVBD increased at all the time points when compared with their respective controls. The data further indicate that the decrease in PKA activity in H-89-treated oocytes was more prominent, but the induction of maturation was slower than that induced by 17 alpha, 20 beta-DP. Moreover, cyanoketone (CK), an inhibitor of steroidogenesis that blocks the salmon gonadotropin (SG-G100)-induced GVBD, failed to abolish the maturational effect of H-89, suggesting that H-89 directly promotes GVBD by reducing PKA activity in oocytes. Taken together, these results indicate that inhibition of PKA activity in the oocyte of C. batrachus is directly involved in the mechanism leading to oocyte maturation.  相似文献   

19.
During maturation, oocytes must undergo a process of nuclear disassembly, or "germinal vesicle breakdown" (GVBD), that is regulated by signaling pathways involving cyclic AMP (cAMP). In vertebrate and starfish oocytes, cAMP elevation typically prevents GVBD. Alternatively, increased concentrations of intra-oocytic cAMP trigger, rather than inhibit, GVBD in several groups of marine invertebrates. To integrate what is known about the stimulation of GVBD by intra-oocytic cAMP, this article reviews published data for ascidian, bivalve, brittle star, jellyfish, and nemertean oocytes. The bulk of the review concentrates on the three most intensively analyzed groups known to display cAMP-induced GVBD-nemerteans, ascidians, and jellyfish. In addition, this synopsis also presents some previously unpublished findings regarding the stimulatory effects of intra-oocytic cAMP on GVBD in jellyfish and the annelid worm Pseudopotamilla occelata. Finally, factors that may account for the currently known distribution of cAMP-induced GVBD across animal groups are discussed.  相似文献   

20.
In the amphibian ovarian follicle, progesterone production is thought to induce maturation of the enclosed oocyte. Intracellular mechanisms regulating these events in the somatic and germ cells are incompletely understood. However, calcium appears to play a role in the production and action of progesterone. Experiments using calcium antagonists were carried out to delineate the role of extra- and intracellular calcium during in vitro stimulation of follicular steroidogenesis and oocyte maturation. Calcium-free medium, verapamil, and La3+ were used to block Ca2+ influx and inhibited follicular progesterone accumulation in response to frog pituitary homogenate (FPH) or exogenous cAMP + IBMX. Progesterone accumulation was not impaired under identical conditions when pregnenolone was added to cultured follicles. TMB-8, an inhibitor of intracellular Ca2+ mobilization, partially inhibited progesterone levels stimulated by FPH at low doses but not higher doses of the inhibitor. However, TMB-8 inhibited FPH-induced oocyte germinal vesicle breakdown (GVBD) in a dose-dependent manner, as well as maturation due to exogenous progesterone or La3+. Calmodulin antagonists, W-7, R24571, and trifluoperazine, were used to assess the involvement of calmodulin in the responses of these two cell types. All three antagonists inhibited progesterone accumulation induced by FPH with the apparent order of potency being R24571 greater than W-7 greater than TFP. W-7 inhibited cAMP-induced progesterone elevation, but had no effect on conversion of pregnenolone to progesterone. Of these three calmodulin antagonists, only R24571 exhibited a dramatic ability to inhibit GVBD induced by exogenous progesterone and was associated with morphologic alterations in the oocytes. These data suggest that Ca2+, acting through calmodulin at some specific step(s) distal to cAMP elevation and prior to pregnenolone formation, is involved in FPH-induced progesterone accumulation, apparently with the participation of both extracellular and intracellular pools of Ca2+. In the oocyte, mobilization of Ca2+ from intracellular stores appears to be of primary importance to maturation while extracellular Ca2+ is not. These data provide further evidence that Ca2+ mediates the hormonally provoked responses in both cell types in the intact follicle, but that the source of Ca2+ may differ. Using intact follicles it seems apparent that exploiting this difference with selective inhibitors provides a means for differential modulation and functional uncoupling of these cells with regard to steroidogenesis and steroid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号