首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Circular Dichroism (CD) spectra were collected as a function of sodium perchlorate concentration [NaClO4] for the set of DNA hairpins formed from the oligomer sequences d[(CG)3X4(CG)3] where X = A, T, G or C. Over the range in salt concentration from 0 to 4.0 M NaClO4, the CD spectra invert in a manner characteristic of the B to Z transition. A factor analysis routine is described and employed to determine the least number of basis spectra required to fit the measured spectra of each hairpin over the entire salt range examined. In every case, linear combinations of only two sub-spectra fit the experimental spectra of the hairpins with greater than 98% accuracy, indicating the spectrally monitored structural transitions are two-state. From the relative weights of the individual sub-spectra, B-Z transition curves are constructed. The transitions are analyzed in terms of a simple two-state equilibrium model which yields an evaluation of the transition free-energy, delta GB-Z, as a function of NaClO4 concentration. At 1.0 M NaClO4 and 21 degrees C, delta GB-Z = 5.4, 4.9, 3.6 and 2.3 kcal/mole for the G4, T4, A4 and C4 loop hairpins, respectively.  相似文献   

2.
Expressions for the partition function Q (T) of DNA hairpins are presented. Calculations of Q (T), in conjunction with our previously reported numerically exact algorithm [T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight (1990) Biopolymers, 29, 1715-1734], yield a numerical method to evaluate the temperature dependence of the transition enthalpy, entropy, and free energy of a DNA hairpin directly from its optical melting curve. No prior assumptions that the short hairpins melt in a two-state manner are required. This method is then applied in a systematic manner to investigate the stability of the six basepair duplex stem 5'-GGATAC-3' having four-base dangling single-strand ends with the sequences (XY)2, where X, Y = A, T, G, C, on the 5' end and a T4 loop on the 3' end. Results show that all dangling ends of the sample set stabilize the hairpin against melting. Increases in transition temperatures as great as 4.0 degrees C above the blunt-ended control hairpin were observed. The hierarchy of the hairpin transition temperatures is dictated by the identity of the first base of the dangling end adjoining the duplex in the order: purine greater than T greater than C. Calculated melting curves of every hairpin were fit to experimental curves by adjustment of a single parameter in the numerically exact theoretical algorithm. Exact fits were obtained in all cases. Experimental melting curves were also calculated assuming a two-state melting process. Equally accurate fits of all dangling-ended hairpin melting curves were obtained with the two-state model calculation. This was not the case for the melting curve of the blunt-ended hairpin, indicating the presence of a four-base dangling-end drives hairpin melting to a two-state process. Q (T) was calculated as a function of temperature for each hairpin using the theoretical parameters that provided calculated curves in exact agreement with the experimentally obtained optical melting curves. From Q (T), the temperature dependence of the transition enthalpy delta H, entropy delta S, and free energy delta G were calculated for every hairpin providing a quantitative assessment of the effects of dangling ends on hairpin thermodynamics. Comparisons of our results are made with those of the Breslauer group [M. Senior, R. A. Jones, and K. J. Breslauer (1988) Biochemistry 27, 3879-3885] on the T2 5' dangling-ended d(GC)3 duplexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Quantitative NMR study has shown a significant difference in affinity of (15)NH(4)(+) ions for cation binding sites within G-quadruplexes adopted by d[G3T4G4]2 and d[G4(T4G4)3].  相似文献   

4.
Ito H  Tanaka S  Miyasaka M 《Biopolymers》2002,65(2):61-80
We utilize electrophoresis and find that a thermally treated equimolar mixture of the oligonucleotide d(G(5)T(5)) and its complementary oligonucleotide d(A(5)C(5)) exhibits either two bands or a single band in one lane, depending on the conditions of the incubation solutions. The thermally treated d(G(5)T(5)) solution loaded in a different lane exhibits a single band of the parallel quadruplex [d(G(5)T(5))](4), which is composed of homocyclic hydrogen-bonded G(4) and T(4) tetrads previously proposed. For the thermally treated equimolar mixture of d(G(5)T(5)) and d(A(5)C(5)), the fast band is assigned to a Watson-Crick d(G(5)T(5)). d(A(5)C(5)) duplex, so that the slow band with the same low mobility as that of [d(G(5)T(5))](4) may be assigned to either [d(G(5)T(5))](4) itself or a [d(G(5)T(5)). d(A(5)C(5))](2) quadruplex. If the latter compound is true, this may be the antiparallel quadruplex composed of the heterocyclic hydrogen-bonded G-C-G-C and T-A-T-A tetrads proposed previously. After removing these three bands for the duplex and two kinds of hypothetical quadruplexes, we electrophoretically elute the corresponding compounds in the same electrophoresis buffer using an electroeluter. The eluted compounds are ascertained to be stable by electrophoresis. The circular dichroism (CD) and UV absorption spectra measured for the three isolated compounds are found to be clearly different. For the electrophoretic elution of the hypothetical [d(G(5)T(5))](4) quadruplex, the result of the molecularity of n = 4 obtained from the CD melting curve analysis provides further support for the formation of the parallel [d(G(5)T(5))](4) quadruplex already proposed. For the thermally treated equimolar mixture of d(G(5)T(5)) and d(C(5)A(5)), the fast band with a molecularity of n = 2 corresponds to the Watson-Crick duplex, d(G(5)T(5)). d(A(5)C(5)). The slow band with a molecularity of n = 4 indicates the antiparallel quadruplex [d(G(5)T(5)). d(A(5)C(5))](2), whose observed CD and UV spectra are different from those of [d(G(5)T(5))](4). By electrophoresis, after reannealing the eluted compound [d(G(5)T(5)). d(A(5)C(5))](2), a distinct photograph showing the band splitting of this quadruplex band into the lower duplex and upper quadruplex bands is not possible; but by a transilluminator, we occasionally observe this band splitting with the naked eye. The linear response polarizability tensor calculations for the thus determined structures of the [d(G(5)T(5))](4) quadruplex, the McGavin-like [d(G(5)T(5)). d(A(5)C(5))](2) quadruplex, and the Watson-Crick d(G(5)T(5)). d(A(5)C(5)) duplex are found to qualitatively predict the observed CD and UV spectra.  相似文献   

5.
The influence of one DNA region on the stability of an adjoining region (telestability) was examined. Melting curves of three block DNA's, d(C15A15)·d(T15G15), d(C20A15)·d(T15G20), and d(C20A10)·d(T10G20) were analyzed in terms of the nearest neighbor Ising model. Comparisons of predicted and experimental curves were made in 0.01 M and 0.1 M sodium ion solutions. The nearest neighbor formalism was also employed to analyze block DNA transition in the presence of actinomycin, a G·C specific molecule. The results show that nearest neighbor base-pair interaction cannot predict the melting curves of the block DNA's. Adjustments in theoretical parameters to account for phosphate repulsion assuming a B conformation throughout the DNA's do not alter this conclusion. Changes in the theoretical parameters, which provide good overall agreement, are consistent with a substantial stabilization of the A·T region nearest the G·C block. The melting temperature T A·T for the average A·T pari in d(C20A10)·d(T10G20), with 10 A·T pairs, appears to be 4°C greater than TA·T for d(C15A15)·d(T15G15) and d(C20A15)·d(T15G20), both with 15 A·T pairs. Actinomycin bound to the G·C end effectively stabilizes the A·T end by 9°C. These results indicate a long-range contribution to the interactions governing DNA stability. A possible mechanism for these interactions will be discussed.  相似文献   

6.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

8.
Oligonucleotides 3'-d(GT)(5)-(CH(2)CH(2)O)(3)-d(GT)(5)-3' (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140-142 (1992)]. Four d(GT)(5) strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3'-dG(TG)(4)G-(CH(2)CH(2)O)(3)-dG(GT)(4)G-3' (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G.G and T.T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dyn. 18, 493-503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (tau) of Et:qGT (q = 0.15 +/- 0.01 and tau = 24 +/- 1 ns) and Et:hp-GT (q = 0.10 +/- 0.01 and tau = 16.5 +/- 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient omega = 3.9 +/- 0.1 and the binding constant Kappa = (6.4 +/- 0.1).10(4) M(-1). The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of innerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732-739 (2001)]. The anticooperative type of Et binding was observed in case of hp-GT ps-DNA, with the maximum number of bound Et molecules, N = 4 / 5, and the association constant Kappa = (1.5 +/- 0.1).10(5) M(-1). Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.  相似文献   

9.
The ability of the B-DNA minor groove ligand Hoechst 33258 to discriminate between prototype curved and straight duplex DNA sequences was investigated by circular dichroism (CD) titrations at the wavelengths of absorbance of the ligand. The sequences were studied either within the framework of the ligated decamers (CA(4)T(4)G)(n) and (CT(4)A(4)G)(n), or within that of the single dodecamers GCA(4)T(4)GC and GCT(4)A(4)GC, to confirm and extend our earlier results based on fluorescence titrations of ligated decamers. A unique, strong binding site is invariantly present in both sequence units. The binding affinity of the drug for the site in the curved A(4)T(4) sequence was found 3- to 4-fold higher compared to the straight sequence. All these features hold true irrespective of the sequence framework, thus confirming that they reflect specific properties of the binding to the two sequences. Ligand binding increases the thermal stability of straight and curved duplex dodecamers to the same extent, thus maintaining the melting temperature differential between the two sequences. However, the different melting patterns and the difference between [total ligand]:[site] ratios needed for site saturation in the two duplexes are in agreement with the difference between binding constants derived from CD measurements.  相似文献   

10.
The synthesis and characterization of the duplex block polymers d(C20A10) - d(T10G20) and d(C20A15) - d(T15G20) are described. Thermal denaturation studies on these DNAs in the absence and presence of actinomycin, which binds only to the GC portions of these molecules, have confirmed and extended our previous observation that the properties of one region of a DNA can be influenced (telestabilized) by a remote region. In addition, the large scale synthesis of d(C15A15) - d(T15G15) is described.  相似文献   

11.
Thermodynamic measurements are reported for 51 DNA duplexes with A.A, C.C, G.G, and T.T single mismatches in all possible Watson-Crick contexts. These measurements were used to test the applicability of the nearest-neighbor model and to calculate the 16 unique nearest-neighbor parameters for the 4 single like with like base mismatches next to a Watson-Crick pair. The observed trend in stabilities of mismatches at 37 degrees C is G.G > T.T approximately A.A > C.C. The observed stability trend for the closing Watson-Crick pair on the 5' side of the mismatch is G.C >/= C.G >/= A.T >/= T.A. The mismatch contribution to duplex stability ranges from -2.22 kcal/mol for GGC.GGC to +2.66 kcal/mol for ACT.ACT. The mismatch nearest-neighbor parameters predict the measured thermodynamics with average deviations of DeltaG degrees 37 = 3.3%, DeltaH degrees = 7. 4%, DeltaS degrees = 8.1%, and TM = 1.1 degrees C. The imino proton region of 1-D NMR spectra shows that G.G and T.T mismatches form hydrogen-bonded structures that vary depending on the Watson-Crick context. The data reported here combined with our previous work provide for the first time a complete set of thermodynamic parameters for molecular recognition of DNA by DNA with or without single internal mismatches. The results are useful for primer design and understanding the mechanism of triplet repeat diseases.  相似文献   

12.
The silylphosphine ligand Ph2PSiMe3 reacts readily with a slurry of [Re(CO)5X] (X  Cl, Br) in polar and in non-polar solvents to yield soluble cis-[Re(CO)4- (Ph2PSiMe3)X] (Ia, X  Cl;Ib, X  Br) via CO substitution. Compound I is readily hydrolyzed by water or silica gel to cis-[Re(CO)4(Ph2PH)X]. Compound Ib reacts with [Re(CO)5Br] to yield [Re2(CO)8(μ-PPh2)- (μ-Br)] (II), and with [Mn(CO)5Br] to yield [MnRe- (CO)8(μ-PPh2)(μ-Br)] (III).The reaction of Ph2PSiMe3 with [Mn(CO)5X] (X=Cl,Br,I) is highly dependent upon reaction conditions.In polar and in non-polar solvents, an excess of ligand gives mainly cis-[Mn(CO)4(Ph2PSiMe3)X] (IVa, X  Cl;IVb, X  Br;IVc, X I). With ligand: [Mn(CO)5X] reacting ratios in the range 0.5–1.0:1, the products from the three respective halomanganese complexes in THF were: (a) mainly [Mn2(CO)8(μ- PPh2)(μ-Cl) (Va); (b) both [Mn(CO)4(Ph2PSiMe3)Br] and [Mn2(CO)8(μ-PPh2)(μ-Br)] (Vb); and (c) exclusively [Mn(CO)4(Ph2PSiMe3)I]. The compounds IVa-c are stable in solution at ambient temperatures and are readily hydrolyzed by water or methanol to [Mn(CO)4(Ph2PH)X]. Compound IVb reacts at room temperature with [Mn(CO)5Cl] to yield only [Mn2- (CO)8(μ-PPh2)(μ-Br)] (Vb); compound IVc reacts in hot toluene with [Mn(CO)5Cl] to yield mainly [Mn2(CO)8(μ-PPh2)(μ-I)] (Vc), together with a small amount of the chloro-bridged analog.The dinuclear species II, III and Va-c appear to be formed mainly via an intermolecular elimination of Me3SiX from the appropriate [M(CO)4(Ph2PSiMe3)X] and metalpentacarbonylhalide (chloride or bromide) complexes.  相似文献   

13.
14.
Snoussi K  Halle B 《Biochemistry》2008,47(46):12219-12229
The structural stability of guanine quadruplexes depends critically on an unusual configuration of dehydrated Na (+) or K (+) ions, closely spaced along the central axis of the quadruplex. Crystallography and NMR spectroscopy indicate that these internal ions can be located between the G-quartet planes as well as in the thymine loops, but the precise ion coordination has been firmly established in only a few cases. Here, we examine the bimolecular diagonal-looped foldback quadruplexes [d(G 3T 4G 3)] 2 (Q3) and [d(G 4T 4G 4)] 2 (Q4) by (2)H, (17)O, and (23)Na magnetic relaxation dispersion (MRD). The MRD data indicate that both quadruplexes contain Na (+) ions between the T 4 loops and the terminal G-quartets and that these ions have one water ligand. These ions exchange with external ions on a time scale of 10-60 mus at 27 degrees C, while their highly ordered water ligands have residence times in the range 10 (-8)-10 (-6) s. The MRD data indicate that Q4 contains three Na (+) ions in the stem sites, in agreement with previous solid-state (23)Na NMR findings but contrary to the only crystal structure of this quadruplex. For Q3, the MRD data suggest a less symmetric coordination of the two stem ions. In both quadruplexes, the stem ions have residence times of 0.6-1.0 ms at 27 degrees C. The equilibrium constant for Na (+) --> K (+) exchange is approximately 4 for both loop and stem sites in Q3, in agreement with previous (1)H NMR findings.  相似文献   

15.
The relative contribution of mutation and selection to the G+C content of DNA was analyzed in bacterial species having widely different G+C contents. The analysis used two methods that were developed previously. The first method was to plot the average G+C content of a set of nucleotides against the G+C content of the third codon position for each gene. This method was used to present the G+C distribution of the third codon position and to assess the relative neutrality of a set of nucleotides to that of the G+C content of the third codon position. The second method was to plot the intrastrand bias of the third codon position from Parity Rule 2 (PR2), where A=T and G=C. It was found that whereas intragenomic distributions of the DNA G+C content of these bacteria are narrow in the majority of species, in some species the G+C content of the minor class of genes distributes over wider ranges than the major class of genes. On the other hand, ubiquitous PR2 biases are amino acid specific and independent of the G+C content of DNA, so that when averaged over the amino acids, the biases are small and not correlated with the DNA G+C content. Therefore, translation coupled PR2-biases are unlikely to explain the wide range of G+C contents among different species. Considering all data available, it was concluded that the amino acid-specific PR2 bias has only a minor effect, if any, on the average G+C content. In addition, PR2 bias patterns of different species show phylogenetic relationships, and the pattern can be as a taxal fingerprint. Received: 5 November 1998 / Accepted: 1 March 1999  相似文献   

16.
17.
The DNA [adenine-N6]methyltransferase (Dam) of bacteriophage T4   总被引:8,自引:0,他引:8  
S L Schlagman  Z Miner  Z Fehér  S Hattman 《Gene》1988,73(2):517-530
A functional bacteriophage T4 dam+ gene, which specifies a DNA [adenine-N6]methyltransferase (Dam), was cloned on a 1.8-kb HindIII fragment [Schlagman and Hattman, Gene 22 (1983) 139-156]. Sequence analysis [Macdonald and Mosig, EMBO J. 3 (1984) 2863-2871] revealed two overlapping in-phase open reading frames (ORFs). The 5' proximal ORF initiates translation at an AUG and encodes a 30-kDa polypeptide, whereas the downstream ORF initiates translation at a GUG and encodes a 26-kDa polypeptide. Analysis of BAL 31 deletions in our original dam+ clone has verified that at least one of these overlapping ORFs, in fact, encodes T4 Dam. To investigate where T4 Dam translation is initiated, we have constructed plasmids in which a tac or lambda PL promoter is placed 5' to either the longer ORF or just the shorter ORF. Only clones which contain a promoter in front of the longer ORF produce active T4 Dam. This indicates that the 26-kDa polypeptide alone cannot be T4 Dam. Additional experiments suggest that only the 30-kDa polypeptide is required for enzyme activity and that the shorter ORF is not translated in plasmid-carrying cells. We also present evidence that T4 Dam is capable of methylating 5'-GATC-3', GATm5C, and GAThmC sequences; non-canonical sites (e.g., GACC) are also methylated, but much less efficiently.  相似文献   

18.
The DNA sequence d(G(4)T(4)G(4)) [Oxy-1.5] consists of 1.5 units of the repeat in telomeres of Oxytricha nova and has been shown by NMR and X-ray crystallographic analysis to form a dimeric quadruplex structure with four guanine-quartets. However, the structure reported in the X-ray study has a fundamentally different conformation and folding topology compared to the solution structure. In order to elucidate the possible role of different counterions in this discrepancy and to investigate the conformational effects and dynamics of ion binding to G-quadruplex DNA, we compare results from further experiments using a variety of counterions, namely K(+), Na(+)and NH(4)(+). A detailed structure determination of Oxy-1.5 in solution in the presence of K(+)shows the same folding topology as previously reported with the same molecule in the presence of Na(+). Both conformations are symmetric dimeric quadruplexes with T(4)loops which span the diagonal of the end quartets. The stack of quartets shows only small differences in the presence of K(+)versus Na(+)counterions, but the T(4)loops adopt notably distinguishable conformations. Dynamic NMR analysis of the spectra of Oxy-1.5 in mixed Na(+)/K(+)solution reveals that there are at least three K(+)binding sites. Additional experiments in the presence of NH(4)(+)reveal the same topology and loop conformation as in the K(+)form and allow the direct localization of three central ions in the stack of quartets and further show that there are no specific NH(4)(+)binding sites in the T(4)loop. The location of bound NH(4)(+)with respect to the expected coordination sites for Na(+)binding provides a rationale for the difference observed for the structure of the T(4)loop in the Na(+)form, with respect to that observed for the K(+)and NH(4)(+)forms.  相似文献   

19.
J K James  I Tinoco  Jr 《Nucleic acids research》1993,21(14):3287-3293
The solution structure of the DNA analogue of the unusually stable r[C(UUCG)G] RNA hairpin, 5'-d[GGA-C(TTCG)GTCC]-3', has been determined by NMR spectroscopy, and its structure has been compared to that of the RNA molecule. The RNA molecule is compact and rigid with a highly structured loop. However, the DNA molecule is much less structured. The DNA hairpin contains a B-form stem of four base pairs. The terminal base pair frays, and the 3'-terminal nucleotides, C11 and C12, are in equilibrium between 2'-endo and 3'-endo conformations. Unlike the RNA loop, the DNA loop contains no syn nucleotides, and there is no evidence for base-base or base-phosphate hydrogen bonding in the loop. The loop is flexible, and reveals no specific internucleotide interactions.  相似文献   

20.
Guanine quadruplex (G-quadruplex) structures are formed by guanine-rich oligonucleotides. Because of their in vivo and in vitro importance, numerous studies have been demonstrated that the structure and stability of the G-quadruplex are dependent on the sequence of oligonucleotide and environmental conditions such as existing cations. Previously, we quantitatively investigated the divalent cation effects on the antiparallel G-quadruplex of d(G4T4G4), and found that Ca2+ induces a structural transition from the antiparallel to parallel G-quadruplex, and finally G-wire formation. In the present study, we report in detail the kinetic and thermodynamic analyses of the structural transition induced by Ca2+ using stopped-flow apparatus, circular dichroism, size-exclusion chromatography (SEC) and atomic force microscopy. The quantitative parameters showed that at least two Ca2+ ions were required for the transition. The kinetic parameters also indicated that d(G4T4G4) underwent the transition through multiple steps involving the Ca2+ binding, isomerization and oligomerization of d(G4T4G4). The parallel-stranded G-wire structure of d(G4T4G4), which is a well controlled alignment of numerous DNA strands with G-quartets, as the final product induced by Ca2+, was observed using SEC and atomic force microscopy. These results provide insight into the mechanism of the structural transition and G-wire formation and are useful for constructing a nanomaterial regulated by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号