首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed 35 widely distributed, polymorphic Alu loci in 715 individuals from 31 world populations. The average frequency of Alu insertions (the derived state) is lowest in Africa (.42) but is higher and similar in India (.55), Europe (.56), and Asia (.57). A comparison with 30 restriction-site polymorphisms (RSPs) for which the ancestral state has been determined shows that the frequency of derived RSP alleles is also lower in Africa (.35) than it is in Asia (.45) and in Europe (.46). Neighbor-joining networks based on Alu insertions or RSPs are rooted in Africa and show African populations as separate from other populations, with high statistical support. Correlations between genetic distances based on Alu and nuclear RSPs, short tandem-repeat polymorphisms, and mtDNA, in the same individuals, are high and significant. For the 35 loci, Alu gene diversity and the diversity attributable to population subdivision is highest in Africa but is lower and similar in Europe and Asia. The distribution of ancestral alleles is consistent with an origin of early modern human populations in sub-Saharan Africa, the isolation and preservation of ancestral alleles within Africa, and an expansion out of Africa into Eurasia. This expansion is characterized by increasing frequencies of Alu inserts and by derived RSP alleles with reduced genetic diversity in non-African populations.  相似文献   

2.
Human genome diversity studies analyse genetic variation among individuals and between populations in order to understand the origins and evolution of anatomically modern humans (Homo sapiens sapiens). The availability of thousands of DNA polymorphisms (genetic markers) brings analytic power to these studies. Human genome diversity studies have clearly shown that the large part of genetic variability is due to differences among individuals within populations rather than to differences between populations, effectively discrediting a genetic basis of the concept of ‘race’. Evidence from paleontology, archaeology and genetic diversity studies is quite consistent with an African origin of modern humans more than 100 000 years ago. The evidence favors migrations out of African as the source of the original peopling of Asia, Australia, Europe and Oceania. An international program for the scientific analysis of human genome diversity and of human evolution has been developed. The Human Genome Diversity Project (HGDP) aims to collect and preserve biologic samples from hundreds of populations throughout the world, make DNA from these samples available to scientists and distribute to the scientific community the results of DNA typing with hundreds of genetic markers.  相似文献   

3.
The structure of human mitochondrial DNA variation   总被引:20,自引:0,他引:20  
Summary Restriction analysis of mitochondrial DNA (mtDNA) of 3065 humans from 62 geographic samples identified 149 haplotypes and 81 polymorphic sites. These data were used to test several aspects of the evolutionary past of the human species. A dendrogram depicting the genetic relatedness of all haplotypes shows that the native African populations have the greatest diversity and, consistent with evidence from a variety of sources, suggests an African origin for our species. The data also indicate that two individuals drawn, at random from the entire sample will differ at approximately 0.4% of their mtDNA nucleotide sites, which is somewhat higher than previous estimates. Human mtDNA also exhibits more interpopulation heterogeneity (GST=0.351±0.025) than does nuclear DNA (GST=0.12). Moreover, the virtual absence of intermediate levels of linkage disequilibrium between pairs of sites is consistent with the absence of genetic recombination and places constraints on the rate of mutation. Tests of the selective neutrality of mtDNA variation, including the Ewens-Watterson and Tajima tests, indicate a departure in the direction consistent with purifying selection, but this departure is more likely due to the rapid growth of the human population and the geographic heterogeneity of the variation. The lack of a good fit to neutrality poses problems for the estimation of times of coalescence from human mtDNA data.  相似文献   

4.
The study of recent human evolution, or the origin of modern humans, is currently dominated by two theories. The recent African origin hypothesis holds that there was a single origin of modern humans in Africa about 100,000 years ago, after which these humans dispersed throughout the rest of the world, mixing little or not at all with nonmodern populations. The multiregional evolution hypothesis holds that there was no single origin of modern humans but, instead, that the mutations and other traits that led to modern humans were spread in concert throughout the old world by gene flow, leading to genetic continuity among old world populations during the past million years. Although both of these theories are based on observations stemming from the fossil record, much discussion and controversy during the past six years has focused on the application and interpretation of studies of DNA variation, particularly mitochondrial DNA (mtDNA). The past year, especially, has brought new data, interpretations, and controversies. Indeed, I initially resisted writing this review, on the grounds that new information would be likely to render it obsolete by the time it was published. However, now that the dust is starting to settle, it seems timely to review various investigations and interpretations and where they are likely to lead. While the focus of this review is the mtDNA story, brief mention is made of studies of nuclear DNA variation (both autosomal and Y-chromosome DNA) and the implications of the genetic data with regard to the fossil record and our understanding of recent human evolution.  相似文献   

5.
We analyzed sequence variation in the mitochondrial DNA (mtDNA) hypervariable segment I (HVS-I) from 201 Black individuals from two Brazilian cities (Rio de Janeiro and Porto Alegre), and compared these data with published information from 21 African populations. A subset of 187 males of the sample was also characterized for 30 Y-chromosome biallelic polymorphisms, and the data were compared with those from 48 African populations. The mtDNA data indicated that respectively 69% and 82% of the matrilineages found in Rio de Janeiro and Porto Alegre originated from West-Central/Southeast Africa. These estimates are in close agreement with historical records which indicated that most of the Brazilian slaves who arrived in Rio de Janeiro were from West-Central Africa. In contrast to mtDNA, Y-chromosome haplogroup analysis did not allow discrimination between places of origin in West or West-Central Africa. Thus, when comparing these two major African regions, there seems to be higher genetic structure with mtDNA than with Y-chromosome data.  相似文献   

6.
The mtDNA variation of 74 Khoisan-speaking individuals (Kung and Khwe) from Schmidtsdrift, in the Northern Cape Province of South Africa, was examined by high-resolution RFLP analysis and control region (CR) sequencing. The resulting data were combined with published RFLP haplotype and CR sequence data from sub-Saharan African populations and then were subjected to phylogenetic analysis to deduce the evolutionary relationships among them. More than 77% of the Kung and Khwe mtDNA samples were found to belong to the major mtDNA lineage, macrohaplogroup L* (defined by a HpaI site at nucleotide position 3592), which is prevalent in sub-Saharan African populations. Additional sets of RFLPs subdivided macrohaplogroup L* into two extended haplogroups-L1 and L2-both of which appeared in the Kung and Khwe. Besides revealing the significant substructure of macrohaplogroup L* in African populations, these data showed that the Biaka Pygmies have one of the most ancient RFLP sublineages observed in African mtDNA and, thus, that they could represent one of the oldest human populations. In addition, the Kung exhibited a set of related haplotypes that were positioned closest to the root of the human mtDNA phylogeny, suggesting that they, too, represent one of the most ancient African populations. Comparison of Kung and Khwe CR sequences with those from other African populations confirmed the genetic association of the Kung with other Khoisan-speaking peoples, whereas the Khwe were more closely linked to non-Khoisan-speaking (Bantu) populations. Finally, the overall sequence divergence of 214 African RFLP haplotypes defined in both this and an earlier study was 0.364%, giving an estimated age, for all African mtDNAs, of 125,500-165,500 years before the present, a date that is concordant with all previous estimates derived from mtDNA and other genetic data, for the time of origin of modern humans in Africa.  相似文献   

7.
We report a comparison of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial, and Y-chromosome polymorphisms. Variation is assessed by use of 30 autosomal restriction-site polymorphisms (RSPs), 60 autosomal short-tandem-repeat polymorphisms (STRPs), 13 Alu-insertion polymorphisms and one LINE-1 element, 611 bp of mitochondrial control-region sequence, and 10 Y-chromosome polymorphisms. Analysis of these data reveals substantial congruity among this diverse array of genetic systems. With the exception of the autosomal RSPs, in which an ascertainment bias exists, all systems show greater gene diversity in Africans than in either Europeans or Asians. Africans also have the largest total number of alleles, as well as the largest number of unique alleles, for most systems. GST values are 11%-18% for the autosomal systems and are two to three times higher for the mtDNA sequence and Y-chromosome RSPs. This difference is expected because of the lower effective population size of mtDNA and Y chromosomes. A lower value is seen for Y-chromosome STRs, reflecting a relative lack of continental population structure, as a result of rapid mutation and genetic drift. Africa has higher GST values than does either Europe or Asia for all systems except the Y-chromosome STRs and Alus. All systems except the Y-chromosome STRs show less variation between populations within continents than between continents. These results are reassuring in their consistency and offer broad support for an African origin of modern human populations.  相似文献   

8.
Evolution of modern humans: evidence from nuclear DNA polymorphisms.   总被引:5,自引:0,他引:5  
Previously we have described studies of the evolution of modern humans based upon data for classical genetic markers and for nuclear DNA polymorphisms. Such polymorphisms provide a different point of view regarding human evolution than do mitochondrial DNA sequences. Here we compare revised dates for major migrations of anatomically modern humans, estimated from archaeological data, with separations suggested by a genetic tree constructed from classical marker allele frequencies. Analyses of DNA polymorphisms have now been extended and compared with those of classical markers; genetic trees continue to support the hypothesis of an initial African and non-African divergence for modern humans. We have also begun testing non-human primates for a set of human DNA polymorphisms. For most polymorphisms tested so far, humans share a single allele with other primates; such shared alleles are likely to be ancestral. Populations living in humid tropical environments have significantly higher frequencies of ancestral alleles than do other populations, supporting the hypothesis that natural selection acts to maintain high frequencies of particular alleles in some environments.  相似文献   

9.
The human head louse (Pediculus humanus capitis) and body louse (P. humanus corporis or P. h. humanus) are strict, obligate human ectoparasites that differ mainly in their habitat on the host : the head louse lives and feeds exclusively on the scalp, whereas the body louse feeds on the body but lives in clothing. This ecological differentiation probably arose when humans adopted frequent use of clothing, an important event in human evolution for which there is no direct archaeological evidence. We therefore used a molecular clock approach to date the origin of body lice, assuming that this should correspond with the frequent use of clothing. Sequences were obtained from two mtDNA and two nuclear DNA segments from a global sample of 40 head and body lice, and from a chimpanzee louse to use as an outgroup. The results indicate greater diversity in African than non-African lice, suggesting an African origin of human lice. A molecular clock analysis indicates that body lice originated not more than about 72,000 +/- 42,000 years ago; the mtDNA sequences also indicate a demographic expansion of body lice that correlates with the spread of modern humans out of Africa. These results suggest that clothing was a surprisingly recent innovation in human evolution.  相似文献   

10.
A leading theory for the origin of modern humans, the ‘recent African origin’ (RAO) model [1], postulates that the ancestors of all modern humans originated in East Africa and that, around 100,000 years ago, some modern humans left the African continent and subsequently colonised the entire world, displacing previously established human species such as Neanderthals in Europe 2., 3.. This scenario is supported by the observation that human populations from Africa are genetically the most diverse [2] and that the genetic diversity of non-African populations is negatively correlated with their genetic differentiation towards populations from Africa [3].  相似文献   

11.
BACKGROUND: About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San. RESULTS: We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups. CONCLUSIONS: The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.  相似文献   

12.
East Asia is one of the few regions in the world where a relatively large number of human fossils have been unearthed--a discovery that has been taken as evidence for an independent local origin of modern humans outside of Africa. However, genetic studies conducted in the past ten years, especially using Y chromosomes, have provided unequivocal evidence for an African origin of East Asian populations. The genetic signatures present in diverse East Asian populations mark the footsteps of prehistoric migrations that occurred tens of thousands of years ago.  相似文献   

13.
Molecular genetic data have greatly improved our ability to test hypotheses about human evolution. During the past decade, a large amount of nuclear and mitochondrial data have been collected from diverse human populations. Taken together, these data indicate that modern humans are a relatively young species. African populations show the largest amount of genetic diversity, and they are the most genetically divergent population. Modern human populations expanded in size first on the African continent. These findings support a recent African origin of modern humans, but this conclusion should be tempered by the possible effects of factors such as gene flow, population size differences, and natural selection. BioEssays 20:126–136, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

14.
Relethford JH 《Heredity》2008,100(6):555-563
A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.  相似文献   

15.
M T Hamblin  M Veuille 《Genetics》1999,153(1):305-317
Previous studies based on allozyme variation have found little evidence for genetic differentiation in Drosophila simulans. On the basis of DNA sequence variation at two nuclear loci in four African populations of D. simulans, we show that there is significant structure to D. simulans populations within Africa. Variation at one of the loci, vermilion, appears to be neutral and supports an eastern African origin for European and American populations. Samples from the West Indies, Europe, and North America had a nucleotide diversity lower than that of African populations at vermilion and show nonequilibrium haplotype distributions at both vermilion and G6pd, consistent with a hypothesis of recent bottleneck and possibly also admixture in the history of these populations. Directional selection, previously documented at G6pd, appears to have occurred within the coalescence time of the species, obscuring deep population history.  相似文献   

16.
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.  相似文献   

17.
Analysis of mitochondrial DNA (mtDNA) control region polymorphisms in 28 Carib people of Belize, former British Honduras, revealed high levels of genetic admixture with West African populations. A previously characterized length mutation consisting of a deletion of nine base pairs in an intergenic mtDNA region was observed in two of the individuals. Phylogenetic analysis of mtDNA control region sequences associated with the mutation suggested that it arose independently in different geographical locations. Whereas in one individual the deletion reflects the Amerindian ancestry of the Caribs, in the second case it seems to be of African origin, as it occurred in conjunction with an mtDNA type found in sub-Saharan Africa. Our results agree with historical accounts on the origins of the Caribs of Belize.  相似文献   

18.
In admixed populations, genetic contributions from males and females of specific parental populations can be of different proportions due to past directional mating during the process of genetic admixture. In this research paper, we provide evidence of such male- and female-specific differential admixture components of African, European, and American Indian origin in an admixed population from the city of Melo, in the northeastern region of Uruguay. From data on 11 autosomal markers from a sample of 41 individuals of mixed African descent, we estimated 47% African, 38% European, and 15% Amerindian contributions. In contrast, 6 mtDNA site-specific polymorphic markers showed that the mtDNA genome of these individuals was 52% African, 19% European, and 29% Amerindian, while from 3 Y-specific polymorphic sites, we estimated 30% African, 64% European, and 6% Amerindian contributions. We argue that this heterogeneity of admixture estimates results from disproportionate unions of European males with African and American Indian females from which this mixed African population was formed. Also, we argue that the asymmetry of the admixture estimates from the three sets of markers (autosomal, mtDNA, and Y-linked) is a result of the changes in the direction of mating during the history of the population. Implications of such evidence of directional mating are discussed, indicating the need of further demographic data for a quantitative assessment of the impact of directional mating on genetic structure of admixed populations.  相似文献   

19.
Data on the frequency of the mtDNA region V deletion were used to estimate the relative maternal contribution from the parental populations to the gene pools of the two Black communities of Rio Cayapas and Viche in northern Ecuador. Ethnohistorical records and nuclear DNA data indicate that these populations are hybrids of West African and Amerindian populations. The unique distribution of the DNA marker in these parental groups provided good admixture estimates. The fraction of mtDNA of Amerindian origin in the population of Rio Cayapas is quite small (8%±5%), whereas in the community of Viche the native Americans contributed the major portion of the gene pool (51%±15). The mtDNA estimate for Rio Cayapas is similar to that of some protein polymorphisms, which confirms the cultural and genetic isolation of this community from the neighboring native population. On the other hand, the admixture value obtained from nuclear genes in Viche is statistically different from the estimate obtained from mtDNA data. This supports the traditional belief, gathered from historical records and cultural data, that the contribution from Indian females was higher than that of Indian males, at least in the primary settlements of the African-American population of Esmeraldas.  相似文献   

20.
Previous research by the first author revealed that, relative to other modern peoples, sub-Saharan Africans exhibit the highest frequencies of ancestral (or plesiomorphic) dental traits and, thus, appear to be least derived dentally from an ancestral hominin state. This determination, in conjunction with various other lines of dental morphological evidence, was interpreted to be supportive of an African origin for modern humans. The present investigation expands upon this work by using: 1) direct observations of fossil hominin teeth, rather than data gleaned from published sources, 2) a single morphological scoring system (the Arizona State University Dental Anthropology System) with consistent trait breakpoints, and 3) data from larger and more varied modern human comparative samples. As before, a multivariate distance statistic, the mean measure of divergence, was used to assess diachronic phenetic affinities among the Plio-Pleistocene hominins and modern humans. The present study also employed principal components analysis on dental trait frequencies across samples. Both methods yielded similar results, which support the previous findings; that is, of all modern human samples, sub-Saharan Africans again exhibit the closest phenetic similarity to various African Plio-Pleistocene hominins-through their shared prevalence of morphologically complex crown and root traits. The fact that sub-Saharan Africans express these apparently plesiomorphic characters, along with additional information on their affinity to other modern populations, evident intra-population heterogeneity, and a world-wide dental cline emanating from the sub-continent, provides further evidence that is consistent with an African origin model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号