首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.  相似文献   

2.
Gonadal hormones have been shown to modulate memory retention in female rats. The current experiments examine the role of testicular hormones in modulating the performance of male rats on two spatial water maze tasks. In the first study, castrated and intact rats were trained on the visible platform and hidden platform versions of the Morris water maze task. Castration did not affect performance on either version of this reference memory task with castrated and intact rats demonstrating similar performance both during acquisition and on post-training probe trials. In the second experiment, castrated and intact rats were tested on a delayed-matching-to-place version of the water maze. Rats received a series of trial pairs in the maze with a hidden platform located in the same pool location on the exposure and retention trials of each pair; between pairs of trials, however, the platform was repositioned to a novel pool location. The interval between trials was either 10- or 60-min and memory retention, taken as the difference between the pathlengths on the exposure and retention trials, declined as the interval increased. Relative to intact males, castrated males demonstrated impaired working memory retention at 60-min but not at 10-min retention intervals. This interval-dependent impairment in working memory retention was reversed by physiologic levels of testosterone replacement. These findings indicate that castration does not significantly affect acquisition or probe trial performance on a classic reference memory task but does impair spatial working memory retention, an effect that is reversed by exogenous testosterone.  相似文献   

3.
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans'' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons'' visual control of body motion during avoidance.  相似文献   

4.
Binocular cues and the control of prehension   总被引:3,自引:0,他引:3  
The present study was designed to assess the importance of binocular information (i.e. binocular disparity and angle of convergence) in the control of prehension. Previous studies which have addressed this question have typically used the same experimental manipulation: comparing prehensile movements executed either under binocular conditions to those executed when one eye was occluded (monocular). However this may not be the correct comparison as in addition to depriving the subject of binocular depth cues. it also deprives the subject of any visual information in one eye. Therefore we determined the prehensile performance when the subject viewed the target object and scene with either (i) two different views (binocular), (ii) two identical views (bi-ocular), or (iii) one view only (monocular). Overall, the qualitative and quantitative performance in the bi-ocular and monocular control conditions was very similar on all the main measures (and different from the performance in the binocular condition). We conclude that the deficits in performance observed found for 'monocular' reaches should be attributed to the lack of local depth information specified by the binocular cues. In addition we speculate that convergence angle and binocular disparity, although involved in both the pre-movement and movement-execution phases of the reach, the cues may be weighted differently in both phases of a prehension movement depending on the behavioural strategy involved.  相似文献   

5.
It has been argued that visual perception and the visual control of action depend upon functionally distinct and anatomically separable brain systems. Electrophysiological evidence indicates that binocular vision may be particularly important for the visuomotor processing within the posterior parietal cortex, and neuropsychological and psychophysical studies confirm that binocular vision is crucial for the accurate planning and control of prehension movements. An unresolved issue concerns the consequences for visuomotor processing of removing binocular vision. By one account, monocular viewing leads to reliance upon pictorial visual cues to calibrate grasping and results in disruption to normal size-constancy mechanisms. This proposal is based on the finding that maximum grip apertures are reduced with monocular vision. By a second account, monocular viewing results in the loss of binocular visual cues and leads to strategic changes in visuomotor processing by way of altered safety margins. This proposal is based on the finding that maximum grip apertures are increased with monocular vision. We measured both grip aperture and grip force during prehension movements executed with binocular and monocular viewing. We demonstrate that each of the above accounts may be correct and can be observed within the same task. Specifically, we show that, while grip apertures increase with monocular vision, consistent with altered visuomotor safety margins, maximum grip force is nevertheless reduced, consistent with a misperception of object size. These results are related to differences in visual processing required for calibrating grip aperture and grip force during reaching.  相似文献   

6.
Previous experiments on visual feature discrimination abilities have consistently shown a right-eye system lateralization in pigeons, Columba livia, and young domestic chickens, Gallus gallus domesticus, both nonpasserine species. Recently, however, it has been shown that photoreceptor distribution in the left and right retinas are asymmetrical in the European starling, Sturnus vulgaris, a passerine species. Single cone receptors are significantly more abundant in the left retina, which suggests that starlings should perform visual discrimination tasks more proficiently with the left eye, in contrast to previous findings with nonpasserines. We tested this hypothesis using the technique of monocular occlusion. In the first experiment, starlings were tested on a simultaneous visual discrimination task in three conditions: binocular (both eyes), left monocular (left eye only) and right monocular (right eye only). Subjects in the binocular and left-monocular conditions achieved significantly higher performance scores on the discrimination task than birds in the right-monocular condition. A second experiment found similar results, with birds in the left-monocular condition learning the discrimination task more than twice as quickly as those in the right-monocular condition. Subsequent tests with the alternative eye for both groups indicated no interocular transfer. These findings suggest that visual discriminative abilities in starlings are asymmetrical, and that they are lateralized in the opposite eye system than has been reported for all other species tested to date.  相似文献   

7.
8.
Four monocularly and two binocularly viewing pigeons were trained to peck a key when it displayed one stimulus (S+) but not to peck when it displayed another stimulus (S−). S+ and S− were a lateral mirror-image pair of two-coloured stimuli. When tested for transfer with the untrained eye open, two of the monocular birds pecked more during S− than S+, the other two continuing to favour S+. During generalization tests on the wavelength dimension all monocular birds pecked much more often during one S+ colour than during the other. The colour controlling pecking was that displayed on the side of the key facing the open eye during S+ presentations. Both binocular birds developed asymmetrical responses to the key, one favouring the left, the other the right side of the key. Generalization tests on the wavelength dimension showed selective control by the colour displayed on the favoured side of the key during S+ presentations. The results are interpreted as supporting the view that pigeons learn to discriminate lateral mirror images by developing asymmetrical observing responses that convert the left-right difference between the mirror images into a difference more easily discriminable.  相似文献   

9.
It has been suggested that birds prefer to use a particular eye while learning to detect cryptic prey and that this eye preference enhances foraging performance. European starlings (Sturnus vulgaris) with the left, right, or both eyes available learned to detect inconspicuous cues associated with the presence of hidden prey. Acquisition scores were not significantly different between left and right-eyed birds; however, performance in the binocular condition was significantly higher than in the two monocular conditions. When binocular birds were tested with familiar and unfamiliar cues present simultaneously, the familiar cue was selected significantly more often than the unfamiliar cue, suggesting that the birds were searching for specific cue features. When monocular birds were tested using only the naïve eye, performance dropped significantly. In right-eyed birds using the naïve left eye, performance remained at chance levels over transfer trials. However, left-eyed birds using the naïve right eye had a superior performance compared to the initial acquisition scores of right-eyed birds and also showed a significant improvement in performance over transfer trials. Thus, although there was no direct evidence of lateralization during acquisition, there was unilateral transfer of the prey detection skill from the right to the left hemisphere.  相似文献   

10.
Whether contrast adaptation may enhance contrast discrimination is a question that has remained largely unresolved because of conflicting empirical evidence. Greenlee and Heitger (1988), for example, reported that contrast discrimination may be enhanced after contrast adaptation, while Maattanen and Koenderink (1991) did not. This paper aimed to account for the different conclusions reached by these independent researchers by manipulations of key differences that exist between the two studies. It is shown that contrast discrimination may be enhanced after adaptation, but that these effects can vary markedly across subjects and test conditions. Enhancements in contrast discrimination are reported to be significant when adapting and testing at low levels of contrast, but just significant at higher levels of contrast. For high contrast signals; enhancements are shown to be independent of temporal frequency but dependent upon viewing conditions. Under binocular viewing conditions, enhancements in contrast discrimination thresholds are shown to be significantly higher than under monocular viewing conditions. It is suggested that the different conclusions reached by Greenlee and Heitger and by Maattanen and Koenderink may be explained by their respective differences in viewing conditions. The former study used binocular, while the latter study used monocular viewing with an occluding eyepatch.  相似文献   

11.
A fresh look at the temporal dynamics of binocular rivalry   总被引:3,自引:0,他引:3  
Human observers viewed dichoptic orthogonal sine-wave gratings and indicated when exclusive visibility occurred in either eye. Contrast was held constant in one eye and was increased or decreased in the other eye for a number of alternation cycles (continuous presentation) or for only the duration of a single period of exclusive visibility (synchronous presentation). The synchronous presentation condition allowed us to identify the differing effects of contrast during the suppressed and during the dominant periods. Mixed phases were recorded as distinct from suppressed and dominant phases, and new classifications of compound-dominant and compound-suppressed phases are defined. The results indicate that binocular rivalry responds to stimulus contrast in two ways. 1) The duty-cycle of dominance and suppression is determined by the relative image contrast between the two eyes, with dominance of the higher contrast image being favored, and 2) the overall rate of alternation is driven by monocular image contrast during the suppressed phase (increased monocular contrast increases the alternation rate) and to a lesser extent by monocular contrast during the dominant phase (increased monocular contrast decreases the rate). A model is developed to reflect these ideas. These results support a reciprocal inhibition oscillator as the underlying mechanism of binocular rivalry.  相似文献   

12.
Recent evidence suggests that the visual control of prehension may be less dependent on binocular information than has previously been thought. Studies investigating this question, however, have generally only examined reaches to single objects presented in isolation, even though natural prehensile movements are typically directed at objects in cluttered scenes which contain many objects. The present study was designed, therefore, to assess the contribution of binocular information to the control of prehensile movements in multiple-object scenes. Subjects reached for and grasped objects presented either in isolation or in the presence of one, two or four additional 'flanking' objects, under binocular and monocular viewing conditions. So that the role of binocular information could be clearly determined, subjects made reaches both in the absence of a visible scene around the target objects (self-illuminated objects presented in the dark) and under normal ambient lighting conditions. Analysis of kinematic parameters indicated that the removal of binocular information did not significantly affect many of the major indices of the transport component, including peak wrist velocity. However, peak grip apertures increased and subjects spent more time in the final slow phase of movement, prior to grasping the object, during monocularly guided reaches. The dissociation between effects of binocular versus monocular viewing on transport and grasp parameters was observed irrespective of the presence of flanking objects. These results therefore further question the view that binocular vision is pre-eminent in the control of natural prehensile movements.  相似文献   

13.
Summary. Epilepsy research relies heavily on animal models that mimic some, or all, of the clinical symptoms observed. We have previously described a new developmental rat model of epilepsy that demonstrates both behavioural seizures and changes in hippocampal morphology. In the current study we investigated whether these rats also show changes in cognitive performance as measured using the Morris water maze task, and emotionality as measured using the Elevated plus maze task. In the water maze, significant differences between male and female rats were found in several performance variables regardless of treatment. In addition, female but not male rats, treated neonatally with domoic acid had significant impairments in learning new platform locations in the water maze. In the elevated plus maze, a significant proportion of female rats spent more time in the open arm of the maze following prior exposure to the maze whereas this effect was not seen in male rats. We conclude that perinatal treatment with low doses of domoic acid results in significant gender-based changes in cognition and emotionality in adult rats.  相似文献   

14.
The authors examined spatial working memory in the Morris water maze during the activity and rest periods of Wistar rats. Wheel-running activity was measured continuously as a marker of circadian phase. To minimize possible masking effects on performance, animals were placed in constant dim light the day before testing and tested in similar light conditions. Three experiments were run, each of them using animals varying in their previous experience in the water maze. Half of the animals of each experiment were tested 2 to 3 h after activity onset (active group), and the other half were tested 14 to 15 h after activity onset (inactive group). In the three experiments, a significant phase effect was observed in the animals' performance in the water maze; animals tested in the active phase showed steeper acquisition curves. These phase effects on performance are due to the animals' search pattern and not to a better acquisition and maintenance of spatial information; rats tested in the inactive phase found the platform faster on the first trial of the test, when the information on the location of the platform had not been presented to the animals. This effect vanished as the amount of training in the pool increased. Finally, swimming speed also showed a temporal effect, suggesting the existence of a phase effect for motivation to escape from the water; rats tested during their inactive phase tended to swim faster. All together, the data suggest a modulating effect of the biological clock on performance in the water maze, particularly when the animals are less experienced.  相似文献   

15.
Galanin is a neuropeptide that coexists with acetylcholine in the septohippocampal pathway. Galanin appears to have a negative modulating influence on cholinergic transmission, suggesting that it might interfere with memory formation on a one-trial discriminative reward learning task. The apparatus was a starburst maze with five radiating alleys, one an ascending baited alley. The subjects were 38 two to three month old Sprague-Dawley rats cannulated in the body of the lateral ventricles and deprived to 80% of initial weight. Ten rats were infused i.c.v. over six mins. with 8 micrograms galanin in 24 microliters saline and 10 with saline alone. Twenty mins. after completion of infusion, each rat was placed in the maze and observed under "blind" conditions for number of errors (blind alleys entered) and latency to reach reward. Each rat's speed score was 100 sec./latency. One day later, each rat was retested in the maze. Each rat's retention scores were its decrease in errors and increase in speed between the single training trial and the retention trial. Galanin infused rats showed significantly less retention by both measures. In a second experiment, either the same dose of galanin or saline alone was infused 20 mins. before the retention trial. There was no significant effect, suggesting that galanin may interfere with memory formation rather than memory retrieval or task performance.  相似文献   

16.
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision.  相似文献   

17.
Stimuli with small binocular disparities are seen as single, despite their differing visual directions for the two eyes. Such stimuli also yield stereopsis, but stereopsis and single vision can be dissociated. The occurrence of binocular single vision depends not only on the disparities of individual stimulus elements, but also on the geometrical relation of different parts of the pattern presented to each eye. A pair of vertical bars with opposite binocular disparities is seen as single if the pair is moderately widely spaced but not if it is narrow. Vertical alignment and identity in length of such bars also increase the occurrence of double vision. It is argued that these effects reflect the extraction of features of the monocular patterns, with these detected monocular features determining the binocular percept. Single and double vision of bars differing in orientation can be similarly analysed. The occurrence of relatively elaborate processing of monocular signals does not exclude the possibility that binocular interaction can occur between signals that have not been so processed. Multiple sites or types of binocular interaction are likely.  相似文献   

18.
In this account fixation and the torque response to a transient moving stripe of flying femaleMusca domestica with monocular sight was tested. This was made by either covering one eye of the fly with opaque paint or by placing a screen in front of one side of the fly's visual field. A stripe was moved with constant speed once around the fly clockwise and, after a pause, counterclockwise. The torque response of the fly was measured during the motion of the stripe and shortly beforehand. The results demonstrated that the monocular torque response to progressive (from front to back) motion and regressive (from back to front) motion essentially do not differ from the binocular response, except for the region of bionocular overlap. The beginning of the response of a fly with monocular vision to progressive motion is 11 ° (on average) before the direction of flight (0°), which means that the maximal functional binocular overlap of femaleMusca domestica is stretched at least 15° to each side (3.1). In addition, the shape of the monocular torque response to a progressively moving stripe was determined (see Figs. 5Ia and 5IIb). In other experiments similar to the ones described above, a screen was placed on one side of the fly's visual field or then on the other, (instead of covering one eye) and the torque response to the moving stripe was measured. Using this method, a delay response of 90 ms was measured. We suggest that this is the delay of the direction-sensitive component of the torque response, and therefore an additional argument for the existence of two components for the optomotor torque response. Flies with a covered eye or with a screen placed in front of one side of the visual field were able to fixate a single narrow long black stripe. This, however, was possible only when an additional offset signal was added, in order to give the stripe a constant velocity component. As a result there was a shift of the fixation towards the unobscured eye. The shift was small for the monocular flies, and it was larger (13° on average) when the screen was on one side of the fly. A new type of laser torquethrust transducer was developed and is described.  相似文献   

19.
Two previous experiments on food storing and one-trial associative learning in marsh tits (Clayton 1992a; Clayton and Krebs 1992) demonstrate that information coming into the brain from the left eye disappears from the left eye system between 3 and 24 h after memory formation, whereas that coming into the brain from the right eye remains stable within the right eye system for at least 51 h after memory formation. Performance after a 7 h retention interval appears to represent an intermediate stage in which the information is no longer accessible to the left eye system but is not yet available to the right eye system, suggesting a unilateral transfer of memory. The experiments reported here further investigated lateralization and unilateral transfer of memory in food-storing marsh tits, Parus palustris, using the technique of monocular occlusion. Birds were tested for their ability to retrieve stored seeds after retention intervals of 3, 7 and 24 h under 4 different occlusion treatments. Two predictions were tested: (a) with right eye occlusion during storage, birds should show better memory performance after 3 and 24 h than after 7 h and (b) memory should be more accurate when both eyes are used during storage than with monocular occlusion. The first prediction, which arises from the fact that memory is transferred from the left to the right eye system at about 7 h and is inaccessible during the transfer, was supported by the data. The second prediction, however, was not supported. Previous work has shown that in marsh tits the two eye systems remember preferentially different aspects of the stimulus: the left eye system responds to spatial position and the right eye system to object-specific cues. It is possible that the failure to find superior performance in binocular tests was because the task could be solved by either spatial or object-specific memory.  相似文献   

20.
Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号