首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Chloride ions (Cl) are concentrated in airway epithelial cells and subsequently secreted into the tracheal lumen by downhill flux through apical Cl channels. We have studied Cl currents in cultured canine tracheal cells using the whole-cell voltage-clamp technique. Ultrastructural techniques demonstrated that the cells used in the electrophysiological experiments possessed apical membrane specializations known to be present in the intact, transporting cell type. Cultured cells 2–6 days old were characterized by an input resistance of 3.4±0.8 G (n=11) and a capacitance of 63.8±10.8 pF (n=26). A comparison of 3 and 4 day-old cells with 5 and 6 day-old cells showed that the input resistance decreased almost 50%, and the cell capacitance and the inward and outward currents increased concomitantly approximately 200%. Cultured cells 3–4 days old held at –40 mV produced currents of 196±22 pA at 50 mV and –246±27 pA at –90 mV (n=212) with pipette and bath solutions containing primarily 140 KCl and 140 NaCl, respectively. The chloride channel blocker diphenylamine-2-carboxylate (DPC, 100 m) suppressed whole-cell currents by 76.8% at 60 mV; however, currents were unaffected by the stilbenes SITS (1mm) and DNDS (1–30 m). Replacement of K+ with Cs+ in the pipette solution did not affect the outward current, the current reversal potential, or the input resistance of the cells, indicating that the current was not significantly K+ dependent when the intrapipette solution was buffered to a Ca2+ concentration of 20nm. The Cl/Na+ permeability ratio was estimated to be greater than 11 as calculated from reversal potential measurements in the presence of an internal to external NaCl concentration ratio of 12. Current equilibrium permeabilities, relative to Cl were: I (2.9)NO 3 (1.1)Br (1.1)Cl (1.0)F (0.93)MeSO 4 (0.19)gluconate (0.18)aspartate (0.14). Depolarizations to potentials greater than 20 mV elicited a time-dependent component in the outward current in 71% of the cells studied. Currents inactivated with a double exponential time course at the most depolarized voltages. Recovery from inactivation was fast, holding potential-dependent, and followed a double exponential time course. Current amplitude was increased via a cAMP-dependent pathway as has been demonstrated for single Cl-selective channels in cell-attached patches from cultured canine and human tracheal epithelial cells. Forskolin, an activator of adenylate cyclase, produced a 260% increase in the outward current at +50 mV. In summary, cultured canine tracheal cells have a single resting conductance that is Cl selective, voltage-dependent, and modulated by a cAMP-dependent mechanism. This preparation appears to be appropriate for analysis of cellular modulation of airway Cl channels and Cl secretion.  相似文献   

2.
3.
The single channel inside-out patch clamp technique was used to characterize ion channels in the apical membranes of ragweed-sensitized and control canine tracheal epithelial cells maintained in primary culture. Patches were obtained from single isolated cells or from cells at the edges of confluent sheets. A new type of chloride channel was seen in sensitized cells but not in control cells. The channel showed inward rectification in symmetric chloride solutions with conductance varying from 95 pS to 52 pS over the range of –60 mV to 60 mV membrane potential. Channel gating was voltage dependent with maximal opening at about –30 mV Kinetic analysis showed that distributions of closed and open times could both be well fitted by the sums of three exponential components. Rate constants for transitions between the states of a linear kinetic model were calculated, with only one rate being significantly voltage dependent. The possible significance of this channel is discussed. Offprint requests to: A. S. French  相似文献   

4.
5.
We studied the effects of arachidonic acid (AA) on Cl secretion across primary cultures of dog tracheal epithelium. Cell sheets showed mean values for baseline short-circuit current (Isc) and transepithelial resistance of 33.8 muA/cm2 and 360 omega.cm2 (n = 44). AA (5 x 10(-5) M) added to both sides increased Isc by 27.8 +/- 5.2 muA/cm2 (mean +/- SE, n = 8), and elevated intracellular cAMP levels. In the presence of 5 x 10(-6) M of both indomethacin (INDO) and nordihydroguaiaretic acid (NDGA) (inhibitors of cyclooxygenase and lipoxygenase, respectively), AA reduced Isc by 4.4 +/- 0.6 muA/cm2 (n = 10) without changing cAMP. Both INDO and NDGA were necessary to abolish the Isc increase in response to AA. The effects of AA on Isc were unaffected by amiloride. In the presence of INDO and NDGA, isoproterenol (ISO) raised cAMP and increased Isc by 27.6 +/- 4.3 (transient) and 12.8 +/- 3.2 muA/cm2 (sustained) (n = 9). With AA present as well as INDO and NDGA, the transient and sustained responses to ISO were significantly reduced to 13.2 +/- 2.4 and 3.9 +/- 0.8 muA/cm2 (n = 10), respectively; the increase in cAMP was unaltered. AA approximately halved baseline efflux of 125I from confluent cell sheets in high K medium and reduced the isoproterenol-induced increase in efflux to 20% of control. These data are consistent with the reported inhibitory effect of AA on apical membrane chloride channels.  相似文献   

6.
7.
The metabolism of arachidonic acid (AA) in fragments of lactating rabbit mammary glands in vitro was studied by considering the distribution of 13-[14C]AA in the cells, and the effects of inhibitors of cyclooxygenase and lipoxygenase pathway on the basal and prolactin (PRL)-stimulated casein secretion. 13-[14C]AA was incorporated in all classes of lipids and PRL increased transiently the percentage of free fatty acid after 1 and 5 min. Ten microM ETYA (5,8,11,14-Eicosatetraynoic acid), a tetrayne analogue of AA inhibited prostaglandins F2 alpha (PGF2 alpha) production but not leukotrienes B4 and C4 (LTB4 and LTC4) production and increased basal casein secretion. 10(-4) M DCHA (Docosahexaenoic acid) a competitive inhibitor of prostaglandin-synthetase inhibited PGF2 alpha production but did not affect basal nor PRL-stimulated casein secretion. Fourteen microM indomethacin inhibited PGF2 alpha and LTC4 production and PRL-stimulated casein secretion. Ten microM NdgA (nordihydroguaiaretic acid) an inhibitor of lipoxygenase pathway, inhibited LTB4 and LTC4 production, increased basal level of casein secretion and inhibited PRL-stimulated casein secretion. Hundred microM caffeic acid, an inhibitor of glutathione-S-transferase (GST), a class of enzymes implied in the transformation of LTA4 into LTC4, had the same effect that NDGA on basal and PRL-stimulated casein secretion. These findings show that inhibitors of AA metabolites alter casein secretion.  相似文献   

8.
Arachidonic acid metabolism by erythrocytes   总被引:2,自引:0,他引:2  
Rabbit, chicken, rat, and dog erythrocytes (10(9) cells/ml) synthesized immunologically active 12-hydroxyeicosatetraenoic acid (12-HETE) when stimulated by the Ca2+ ionophore, A-23187. The levels of immunologically active hydroxyeicosatetraenoic acid were independent of the number of white blood cells and platelets in the erythrocyte suspensions. Two products were resolved by high performance liquid chromatography; one product was identified as 12-HETE, while a second product appeared to be a dihydroxyeicosatetraenoic acid. Radiolabeled arachidonic acid was incorporated into phospholipids. Phosphatidylcholine and phosphatidylethanolamine were primary sources of the 12-HETE and dihydroxyeicosatetraenoic acid, all of which were released from the cells.  相似文献   

9.
10.
The capacity of cultured mesothelial cells to produce prostaglandins from both exogenous an endogenous arachidonic acid has been investigated. Incubations with labelled [1-14C]arachidonic acid and [1-14C]prostaglandin endoperoxide H2 indicated the formation of prostacyclin and prostaglandin E2. Evaluation of the transformation of endogenously released arachidonic acid, however, could only confirm the production of prostacyclin.  相似文献   

11.
12.
We have investigated arachidonic acid (20:4) metabolism by rabbit synovial cells in culture. The lipoxygenase products 5-HETE, 12-HETE and 15-HETE were not detected, despite the presence of a cyclooxygenase inhibitor sodium meclofenamate (20 microM), nor after incubation with ionophore A23187 (1 microM), 20:4 (10 microM), prostaglandin E2, (1 microM), N-formylmethionylleucylphenylalanine (0.01 microM), or murine spleen cell-conditioned medium. [3H]20:4 (10 microM) was incorporated into phospholipids, triacylglycerols and diacylglycerols. A majority of the 3H content of phosphatidylinositol/phosphatidylserine and of diacylglycerols was already present at 1 min, in contrast to the slower accumulation of 3H in triacylglycerols, phosphatidylcholine and phosphatidylethanolamine. The diacylglycerol fraction contained sn-glycerol-1-acyl-2-20:4. These observations are consistent with phospholipase C activity in synovial cells under those culture conditions. The products generated by these enzymes may play important roles in the physiological processes of synovium.  相似文献   

13.
Preimplantation embryos of many species are known to synthesize prostaglandins. These tissue hormones are believed to influence embryonic metabolism, as well as embryo-maternal interaction during implantation although their putative role(s) remains obscure. Here, prostaglandin production by blastocysts from cynomolgus monkeys (Macaca fascicularis) was examined qualitatively during in vitro culture. Tritium labelled arachidonic acid was metabolized to 6 keto-prostaglandin F1 alpha, 2,3-dinor-prostaglandin F1 alpha and thromboxane B2, as characterized by HPLC separation. Also, 6-keto-prostaglandin F1 alpha, and thromboxane B2 as characterized by HPLC separation. Also, 6-keto-prostaglandin F1 alpha and thromboxane B2 were identified by specific RIA's. Our data suggest that the main arachidonic acid metabolites produced by blastocysts of cynomolgus monkeys are prostacyclin and thromboxane.  相似文献   

14.
15.
1. Arachidonic acid was metabolized by lipoxygenase and prostaglandin synthetase enzymes systems in the perfused ram testis. 2. The major product of the prostaglandin synthetase was 6-keto-PGF1 alpha (6KF). 3. Addition of testosterone resulted in a significant increase in the 6KF. 4. Arachidonic acid (AA) as well as testosterone penetrated the perfused testis. 5. Both 15-HPETE and 15-HETE, the products of the 15-lipoxygenase enzyme, were detected. 6. Addition of 0.1% BSA changed the pattern of the oxidized arachidonic acid metabolism.  相似文献   

16.
Arachidonic acid metabolism in purified human lung mast cells   总被引:9,自引:0,他引:9  
Arachidonic acid metabolism has been explored in preparations of purified human lung mast cells prelabeled with arachidonic acid (AA). Cells were of 83 to greater than 96% purity, and each experiment was performed with four to six different preparations of mast cells. After overnight culture of the purified cells in the presence of 3H-AA, followed by extensive washing in buffer, mast cell uptake of labeled AA was 61.4 +/- 14.8 pmol/10(6) cells with 21 +/- 2.4% of the label in phospholipids, 73 +/- 2.1% in neutral lipids, and 3.6 +/- 0.8% as free AA. Analysis of the distribution of radioactivity in phospholipid classes revealed 51.4 +/- 5.5% of the label in phosphatidylcholine, 14.5 +/- 1.6% in phosphatidylinositol, 12.0 +/- 3.0% in phosphatidylethanolamine, and 9.1 +/- 2.4% in sphingomyelin, with the rest in other phospholipid classes. Challenge of these cells with an optimal concentration of anti-IgE led to the release of 20 +/- 4.0% of cellular histamine and to a reduction in labeled phosphatidylcholine and phosphatidylinositol to 75.5 +/- 8.8% and 84.2 +/- 4.5% of the control levels, respectively, (p less than 0.05); anti-IgE challenge produced no statistically significant change in the quantities of other labeled phospholipids. Activation of human lung mast cells with anti-IgE led to the release of 3.4 +/- 1.3% of the cellular 3H as AA and AA metabolites (1.5 +/- 0.6% as unmetabolized AA) in conjunction with 16 +/- 4.3% of the cellular histamine. Although activation of human lung mast cells with ionophore A23187 caused 70 +/- 1.1% histamine release, a similar quantity of AA and AA metabolites was released (a total of 4.0 +/- 0.8% with 2.3 +/- 1.5% as unmetabolized AA). Analysis of the released metabolites by liquid scintillation spectrometry after high performance liquid chromatography separation showed that approximately equal amounts of metabolites were produced after mast cell activation with anti-IgE and ionophore A23187. In this series of experiments approximately equal amounts of cyclooxygenase and lipoxygenase products were generated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary The purpose of this investigation was to provide evidence for the secretion of high molecular weight mucins, CTM-A and CTM-B, in primary culture of canine tracheal epithelial (CTE) cells. The cells were isolated from tracheas of mongrel dogs by pronase treatment. Primary cultures of the epithelial cells were established using ICN cellagen inserts in Dulbecco’s modified Eagle’s/F12 medium supplemented with growth factors and could be maintained for up to 23 days. The evidence for the mucin secretion in culture medium and their localization in the cells was established by a) positive immunocytochemical staining using specific antibodies developed against purified native as well as deglycosylated CTM-A and CTM-B; b) incorporation of labeled amino acids, followed by electrophoresis and autoradiography detection of glycoconjugates purified from the culture medium; c) comparison of the amino acid compositions of mucin purified from canine tracheal pouch secretions and that purified from the culture medium; and d) Western blot analyses using specific polyclonal antibodies directed against deglycosylated CTM-A and CTM-B. Immunoaffinity purified secreted labeled glycoconjugates were resistant to hyaluronidase treatment. The effects of cyclic AMP (1 × 10−5 M), dibutyryl cyclic AMP (1 × 10−5 M), 8-bromocyclic AMP (1 × 10−5 M), and prostaglandin E1 (1 × 10−6 M) on mucin secretion by CTE cells were also investigated. Secretion of mucins by CTE cells in culture was considerably more enhanced by 8-bromocyclic AMP than that observed for other secretagogues used in this study.  相似文献   

18.
The eicosanoids, including prostaglandin E2 (PGE2) and other bioactive arachidonic acid metabolites, are important local mediators of bone remodeling. Presumably, the limited or excessive synthesis of the eicosanoids could compromise bone homeostasis. We have noted that the stimulated release of arachidonic acid by adult male donor derived human osteoblast-like (hOB) cells exceeded the stimulated release measured for female-derived hOB cells by 1.5-fold. Assays of PGE2 biosynthesis by cytokine-stimulated hOB cells also demonstrated a sex-linked difference, such that male hOB cell PGE2 production exceeded female cell production by 1.6–2.2-fold. The calcium-dependent cytoplasmic phospholipase A2 activity in subcellular fractions prepared from hOB cell homogenates was higher in both the cytosolic (1.6-fold) and particulate (1.5-fold) fractions from the male cells than in those prepared from female hOB cells, suggesting a molecular basis for the observed sexually dimorphic characteristics related to arachidonic acid metabolism by hOB cells. The relatively limited capacity of the female cells may limit needed intracellular and intercellular signaling during bone remodeling, thereby contributing to the development of bone pathology. J. Cell. Biochem. 71:74–81, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The regulation of the increase in inositol phosphates (IPs) production and intracellular Ca(2+) concentration ([Ca(2+)](i)) by protein kinase C (PKC) was investigated in canine cultured tracheal epithelial cells (TECs). Pretreatment of TECs with phorbol 12-myristate 13-acetate (PMA, 1 microM) for 30 min attenuated the ATP- and UTP-induced IPs formation and Ca(2+) mobilization. The concentrations of PMA that gave half-maximal (EC(50)) inhibition of ATP- and UTP-induced IPs accumulation and an increase in [Ca(2+)](i) were 5-10 and 4-12 nM, respectively. Prior treatment of TECs with staurosporine (1 microM), a PKC inhibitor, partially inhibited the ability of PMA to attenuate ATP- and UTP-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Furthermore, analysis of cell extracts by Western blotting with antibodies against different PKC isozymes revealed that TECs expressed PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -theta, and -zeta. With PMA treatment of the cells for various times, translocation of PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, and -theta from the cytosol to the membrane was seen after 5- and 30-min and 2- and 4-h treatment. However, 6-h treatment caused a partial down-regulation of these PKC isozymes. PKC-zeta was not significantly translocated and down-regulated at any of the times tested. In conclusion, these results suggest that activation of PKC may inhibit the phosphoinositide (PI) hydrolysis and consequently attenuate the [Ca(2+)](i) increase or inhibit independently both responses to ATP and UTP. The translocation of PKC-alpha, -betaI, -betaII, -delta, -epsilon, -gamma, and -theta induced by PMA caused an attenuation of ATP- and UTP-induced IPs accumulation and Ca(2+) mobilization in TECs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号