共查询到20条相似文献,搜索用时 0 毫秒
1.
Barbara Demmig-Adams William W. Adams III Franz-C. Czygan Ulrich Schreiber Otto L. Lange 《Planta》1990,180(4):582-589
Green algal lichens, which were able to form zeaxanthin rapidly via the de-epoxidation of violaxanthin, exhibited a high capacity
to dissipate excess excitation energy nonradiatively in the antenna chlorophyll as indicated by the development of strong
nonphotochemical quenching of chlorophyll fluorescence (FM, the maximum yield of fluorescence induced by pulses of saturating light) and, to a lesser extent, FO (the yield of instantaneous fluorescence). Blue-green algal lichens which did not contain any zeaxanthin were incapable of
such radiationless energy dissipation and were unable to maintain the acceptor of photosystem II in a low reduction state
upon exposure to excessive photon flux densities (PFD). Furthermore, following treatment of the thalli with an inhibitor of
the violaxanthin de-epoxidase, dithiothreitol, the response of green algal lichens to light became very similar to that of
the blue-green algal lichens. Conversely, blue-green algal lichens which had accumulated some zeaxanthin following long-term
exposure to higher PFDs exhibited a response to light which was intermediate between that of zeaxanthin-free blue-green algal
lichens and zeaxanthin-containing green algal lichens. Zeaxanthin can apparently be formed in blue-green algal lichens (which
lack the xanthophyll epoxides, i.e. violaxanthin and antheraxanthin) as part of the normal biosynthetic pathway which leads
to a variety of oxygenated derivatives of β-carotene during exposure to high light over several days. We conclude that the
pronounced difference in the capacity for photoprotective energy dissipation in the antenna chlorophyll between (zeaxanthin-containing0
green algal lichens and (zeaxanthin-free) blue-green algal lichens is related to the presence or absence of zeaxanthin, and
that this difference can explain the greater susceptibility to high-light stress in lichens with blue-green phycobionts. 相似文献
2.
B. Demmig-Adams W. W. Adams III T. G. A. Green F. -C. Czygan O. L. Lange 《Oecologia》1990,84(4):451-456
Summary The effect of high light levels on the two partners of a Pseudocyphellaria phycosymbiodeme (Pseudocyphellaria rufovirescens, with a green phycobiont, and P. murrayi with a blue-green phycobiont), which naturally occurs in deep shade, was examined and found to differ between the partners. Green algae can rapidly accumulate zeaxanthin, which we suggest is involved in photoprotection, through the xanthophyll cycle. Blue-green algae lack this cycle, and P. murrayi did not contain or form any zeaxanthin under our experimental conditions. Upon illumination, the thallus lobes with green algae exhibited strong nonphotochemical fluorescence quenching indicative of the radiationless dissipation of excess excitation energy, whereas thallus lobes with blue-green algae did not possess this capacity. The reduction state of photosystem II was higher by approximately 30% at each PFD beyond the light-limiting range in the blue-green algal partner compared with the green algal partner. Furthermore, a 2-h exposure to high light levels resulted in large reductions in the efficiency of photosynthetic energy conversion which were rapidly reversible in the lichen with green algae, but were long-lasting in the lichen with blue-green algae. Changes in fluorescence characteristics indicated that the cause of the depression in photosynthetic energy conversion was a reversible increase in radiationless dissipation in the green algal partner and photoinhibitory damage in the blue-green algal partner. These findings represent further evidence that zeaxanthin is involved in the photoprotective dissipation of excessive excitation energy in photosynthetic membranes. The difference in the capacity for rapid zeaxanthin formation between the two partners of the Pseudocyphellaria phycosymbiodeme may be important in the habitat selection of the two species when living separate from one another.Abbreviations
F
O
yield of instantaneous fluorescence
-
F
M
maximum yield of fluorescence induced by pulses of saturating light
-
F
V
yield of variable fluorescence (F
M
-FO) induced by pulses of saturating light
-
PFD
photon flux density (400–700 nm)
-
PS II
photosystem II
-
q
NP
coefficient for nonphotochemical fluorescence quenching
-
q
P
(or 1-q
P
)
coefficient for photochemical fluorescence quenching 相似文献
3.
Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts 总被引:1,自引:0,他引:1
Summary Dry lichen thalli were enclosed in gas exchange chambers and treated with an air stream of high relative humidity (96.5 to near 100%) until water potential equilibrium was reached with the surrounding air (i.e., no further increase of weight through water vapor uptake). They were then sprayed with liquid water. The treatment took place in the dark and was interrupted by short periods of light. CO2 exchange during light and dark respiration was monitored continuously. With no exception water uptake in all of the lichen species with green algae as phycobionts lead to reactivation of the photosynthetic metabolism. Further-more, high rates of CO2 assimilation were attained without the application of liquid water. To date 73 species with different types of Chlorophyceae phycobionts have been tested in this and other studies. In contrast, hydration through high air humidity alone failed to stimulate positive net photosynthesis in any of the lichens with blue-green algae (Cyanobacteria). These required liquid water for CO2 assimilation. So far 33 species have been investigated, and all have behaved similarly. These have included gelatinous as well as heteromerous species, most with Nostoc phycobionts but in addition some with three other Cyanophyceae phycobionts. The same phycobiont performance differences existed even within the same genus (e.g. Lobaria, Peltigera) between species pairs containing green or blue-green phycobionts respectively. Free living algae also seem to behave in a similar manner. Carbon isotope ratios of the lichen thalli suggest that a definite ecological difference exists in water status-dependent photosynthesis of species with green and blue-green phycobionts. The underlying biochemical or biophysical mechanisms are not yet understood. Apparently, a fundamental difference in the structure of the two groups of algae is involved. 相似文献
4.
T. Lundmark Johan Bergh Martin Strand Andres Koppel 《Trees - Structure and Function》1998,13(2):63-67
The seasonal variation in maximum photochemical efficiency of photosystem II (Fv/Fm) and the relationship between Fv/Fm and climatic factors such as irradiance, frost-nights and daily mean temperature was studied in young Norway spruce trees
for 4 years in northern Sweden. As a result of night frost, the Fv/Fm-ratio gradually decreased during the autumn. There was between-year variation in the pattern of Fv/Fm in fully exposed shoots during autumn and spring, largely as an effect of differing temperature conditions. During spring,
there was a strong apparent relationship between daily mean temperature and Fv/Fm within the temperature range –3 to 12°C. The light regime to which the needles were exposed during winter affected Fv/Fm, and moderately shaded shoots from the bottom of the canopy generally had a higher Fv/Fm-ratio than fully exposed shoots from the top of the canopy.
Received: 1 October 1997 / Accepted: 16 June 1998 相似文献
5.
Exposure of the photosynthetic machinery to strong light causes the photoinhibition of the photosystem II complex. The recovery from the photoinhibition in vivo was characterized by monitoring the ratio of variable to maximum fluorescence (Fv/Fm) in detached leaves of broad bean (Vicia faba). The changes in the ratio were explained in terms of three components, namely, two saturating exponential components with half rise-times of about 15 and 120 min, respectively, and a non-recovery component. The non-recovery component increased gradually as the exposure to strong light was prolonged. Our results suggest that this irreversible component of the photoinhibition of the photosystem II complex was caused by severe stress due to strong light under which repair of the photosystem II complex was insufficient to allow full recovery. The irreversible photoinhibition is discussed in terms of both the physiology and ecology of plants. 相似文献
6.
缺磷强光下脐橙的过剩能量耗散机制 总被引:10,自引:4,他引:10
采用营养液培养的方法,对缺磷强光下脐橙的过剩能量耗散机制进行了研究.结果表明,在强光下,用缺磷营养液处理脐橙后,光合色素含量、净光合速率Pn、光呼吸速率Pr、最大荧光Fm、光化学效率Fv/Fm和电子传递速率ETR下降,初始荧光Fo和光呼吸/光合比Pr/Pn升高.叶绿素荧光的非光化学猝灭的快相qNf下降,中间相qNm和慢相qNs升高.用DTT处理后Fo升高,qNm和qNs下降,qNf无明显变化.缺磷强光胁迫加剧了脐橙光合作用的光抑制,进而启动了多种能量耗散机制. 相似文献
7.
Salt stress can significantly disrupt the functioning of lichens which are self-sufficient symbiotic organisms inhabiting various severe environments. The aim was to test the effect of salt and sucrose on the photosynthetic efficiency of two selected epiphytic lichens inhabiting the interior of the land. Firstly, we compared the effect of salt and sucrose solutions of different concentrations. Secondly, the effect of salt and sucrose solutions with identical osmotic pressures was compared. The results showed that short-term salt stress leads to a significant reduction of FV/FM, greater changes in chlorophyll fluorescence parameters and OJIP transients compared to the osmotic effects induced by sucrose. This proved that the negative impact of salt stress is associated primarily with ionic effects. The most symptomatic effect of the ionic stress was a significant reduction of the utilisation of trapped energy in electron transport and thereby down-regulation of electron transfer. Since lichens are resistant to a temporary lack of water, ionic stress could have more serious consequences than osmotic stress itself. Hypogymnia physodes was more sensitive to salt stress than Pseudevernia furfuracea, but the reduction of photosynthetic efficiency was not permanent since after 24 h FV/FM returned to the level characteristic for healthy lichens. Nevertheless, repeated exposure to salt may reduce the vitality of lichens growing along communication routes sprinkled with salt in the winter season. Finally, the changes in certain JIP-test parameters were stronger than FV/FM, thus they could be better indicators of salt stress in lichens.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-022-01134-2. 相似文献
8.
In order to survive sunlight in the absence of water, desiccation-tolerant green plants need to be protected against photooxidation. During drying of the chlorolichen Cladonia rangiformis and the cyanolichen Peltigera neckeri, chlorophyll fluorescence decreased and stable light-dependent charge separation in reaction centers of the photosynthetic apparatus was lost. The presence of light during desiccation increased loss of fluorescence in the chlorolichen more than that in the cyanolichen. Heating of desiccated Cladonia thalli, but not of Peltigera thalli, increased fluorescence emission more after the lichen had been dried in the light than after drying in darkness. Activation of zeaxanthin-dependent energy dissipation by protonation of the PsbS protein of thylakoid membranes was not responsible for the increased loss of chlorophyll fluorescence by the chlorolichen during drying in the light. Glutaraldehyde inhibited loss of chlorophyll fluorescence during drying. Desiccation-induced loss of chlorophyll fluorescence and of light-dependent charge separation are interpreted to indicate activation of a highly effective mechanism of photoprotection in the lichens. Activation is based on desiccation-induced conformational changes of a pigment-protein complex. Absorbed light energy is converted into heat within a picosecond or femtosecond time domain. When present during desiccation, light interacts with the structural changes of the protein providing increased photoprotection. Energy dissipation is inactivated and structural changes are reversed when water becomes available again. Reversibility of ultra-fast thermal dissipation of light energy avoids photo-damage in the absence of water and facilitates the use of light for photosynthesis almost as soon as water becomes available. 相似文献
9.
The response of Norway spruce saplings (Picea abies [L.] Karst.) was monitored continuously during short-term exposure (10 days) to high irradiance (HI; 1000mumolm(-2)s(-1)). Compared with plants acclimated to low irradiance (100mumolm(-2)s(-1)), plants after HI exposure were characterized by a significantly reduced CO(2) assimilation rate throughout the light response curve. Pigment contents varied only slightly during HI exposure, but a rapid and strong response was observed in xanthophyll cycle activity, particularly within the first 3 days of the HI treatment. Both violaxanthin convertibility under HI and the amount of zeaxanthin pool sustained in darkness increased markedly under HI conditions. These changes were accompanied by an enhanced non-radiative dissipation of absorbed light energy (NRD) and the acceleration of induction of both NRD and de-epoxidation of the xanthophyll cycle pigments. We found a strong negative linear correlation between the amount of sustained de-epoxidized xanthophylls and the photosystem II (PSII) photochemical efficiency (F(V)/F(M)), indicating photoprotective down-regulation of the PSII function. Recovery of F(V)/F(M) at the end of the HI treatment revealed that Norway spruce was able to cope with a 10-fold elevated irradiance due particularly to an efficient NRD within the PSII antenna that was associated with enhanced violaxanthin convertibility and a light-induced accumulation of zeaxanthin that persisted in darkness. 相似文献
10.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD
photon flux area density
- PSI, PSII
photosyntem I, II
-
F
M, F
O, F
V
maximum, instantaneous, variable fluorescence emission
- PLM
paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error 相似文献
11.
Inhibition of photosynthetic reactions under water stress: interaction with light level 总被引:20,自引:0,他引:20
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F
M) and the variable (F
V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F
O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl
chlorophyll
- PFD
photon flux area density
- PSI, PSII
photosystem I, II
-
F
M, F
O, F
V
maximum, instantaneous, variable fluorescence emission
-
leaf water potential
C.I.W.-D.P.B. Publication No. 775 相似文献
12.
Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold 总被引:3,自引:0,他引:3
A lichen growing in a continental Antarctic region with low temperatures and strong irradiance in summer was investigated
for evidence of photoinhibition. Field experiments with Umbilicaria aprina from a sheltered site with heavy snowpack showed no effects of photoinhibition when the lichen was exposed to strong sun
irradiance for nearly 11 h a day. This was evident from CO2 exchange and simultaneous chlorophyll a fluorescence measurements. CO2 exchange was also not affected if quartz glass allowing greater UV penetration, was used as a lid for the cuvette. The dependency
of net photosynthesis on photosynthetic photon flux density suggests that the lichen is photophilous.
Received: 2 April 1997 / Accepted: 11 August 1997 相似文献
13.
Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants 总被引:10,自引:0,他引:10
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F
M, 692 and F
M, 734). The response of instantaneous fluorescence at 692 nm (F
O, 692) was complex. In leaves of some species F
O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F
O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F
V/F
M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F
O, 692 and F
M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F
O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F
O, 692 and F
M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F
V/F
M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa
kilodalton
- LHC-II
light-harvesting chlorophyll-protein complex
- PFD
photon flux density (photon fluence rate)
- PSI, PSII
photosystem I, II
-
F
O, F
M, F
V
instantaneous, maximum, variable fluorescence emission
-
absorptance
-
a
photon yield of O2 evolution (absorbed light)
C.I.W.-D.P.B. Publication No. 925 相似文献
14.
In this study the effect of increasing temperature on photochemical efficiency of PS II in wheat plants has been studied on a hot summer day (9:00 AM (Control)–7:00 PM) by measuring Chl a fluorescence. Increasing temperature for a short period of time (2–4 h), in nature affects the efficiency of PS II complex reversibly and does not cause permanent damage to any of the components of photosystem II. A scheme has been provided to demonstrate the sequence and severity of events which get affected maximum by temperature stress. 相似文献
15.
Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange () and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.Abbreviations Fo
instantaneous yield of chlorophyll fluorescence
- Fm
maximum yield of fluorescence
- Fv
variable yield (Fm–Fo) of fluorescence
- PFD
photon flux density (400–700 nm)
- Pm
light-saturated rate of photosynthesis
- PSH
photosystem II
- QA
electron acceptor of PSII
-
light-limited quantum yield of photosynthesis 相似文献
16.
Photoinhibition of photosynthesis was induced in intact kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson) leaves grown at two photon flux densities (PFDs) of 700 and 1300 mol·m-2·s-1 in a controlled environment, by exposing the leaves to PFD between 1000 and 2000 mol·m-2·s-1 at temperatures between 10 and 25°C; recovery from photoinhibition was followed at the same range of temperatures and at a PFD between 0 and 500 mol·m-2·s-1. In either case the time-courses of photoinhibition and recovery were followed by measuring chlorophyll fluorescence at 692 nm and 77K and by measuring the photon yield of photosynthetic O2 evolution. The initial rate of photoinhibition was lower in the high-light-grown plants but the long-term extent of photoinhibition was not different from that in low-light-grown plants. The rate constants for recovery after photoinhibition for the plants grown at 700 and 1300 mol·m-2·s-1 or for those grown in shade were similar, indicating that differences between sun and shade leaves in their susceptibility to photoinhibition could not be accounted for by differences in capacity for recovery during photoinhibition. Recovery following photoinhibition was increasingly suppressed by an increasing PFD above 20 mol·m-2·s-1, indicating that recovery in photoinhibitory conditions would, in any case, be very slow. Differences in photosynthetic capacity and in the capacity for dissipation of non-radiative energy seemed more likely to contribute to differences in susceptibility to photoinhibition between sun and shade leaves of kiwifruit.Abbreviations and symbols
F
o
, F
m
, F
v
instantaneous, maximum, variable fluorescence
-
F
v
/F
m
fluorescence ratio
-
F
i
=F
v
at t=0
-
F
F
v
at t=
-
K
D
rate constant for photochemistry
-
k(F
p
)
first-order rate constant for photoinhibition
-
k(F
r
)
first-order rate constant for recovery
- PFD
photon flux density
- PSII
photosystem II
-
i
photon yield of O2 evolution (incident light) 相似文献
17.
Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006) 总被引:4,自引:0,他引:4
The toxicity and growth of Microcystis aeruginosa (UV-006) from the Hartbeespoort Dam, South Africa were investigated at different temperatures and photon fluence rates under laboratory conditions. Cells harvested in late logarithmic growth phase were most toxic when grown at 20°C (LD50) median lethal dose [IP, mouse]=25.4 mg kg-1). Toxicity was markedly reduced at growth temperatures above 28° C. Fluence rate had a smaller effect on the toxicity of the cells, but toxicity tended to be less at the very low and high light fluences. Optimal conditions for growth did not coincide with those for toxin production. Well-aerated cultures of this isolate kept at pH 9.5 by CO2 addition, a temperature of 20–24° C, a fluence rate of 145 mol photons m-2 s-1 and harvested in the late logarithmic growth phase yielded the maximum quantity of toxin.Abbreviation LD50
median lethal dose
An abstract of this work, presented as a poster at the IUBS symposium on toxins and lectins, held at the CSIR, Pretoria, South Africa during 1982 was published in S. Afr. J. Sci. 78, 375 (1982) 相似文献
18.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo
yield of instantaneous fluorescence
- FM
yield of maximum fluorescence
- FV
yield of variable fluorescence
- PFD
photon flux density (400–700 nm)
- PSI (II)
photosystem I (II)
This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance. 相似文献
19.
Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach 总被引:2,自引:0,他引:2
Chloroplast absorbs light energy and transforms it into electron energy, and then converts it into active chemical energy and stable chemical energy. In the present paper, we investigated the effects of Ce(3+), which has the most significant catalytic effects and similar characteristics with Ca(2+), on light energy conversion of spinach chloroplasts under Ca(2+)-deficient stress. The results illuminated that the Hill reaction activity, electron flow both photosystems and photophosphorylation rate of spinach chloroplasts reduced significantly under Ca(2+)-deficient condition, and activities of Mg(2+)-ATPase and Ca(2+)-ATPase on the thylakoid membrane were severely inhibited. Meanwhile, the activity of Rubisco, which is the key enzyme of photosynthetic carbon assimilation, was also prohibited. However, Ce(3+) decreased the inhibition of calcium deprivation the electron transport rate, the oxygen evolution rate, the cyclic and noncyclic photophosphorylation, the activities of Mg(2+)-ATPase, Ca(2+)-ATPase and Rubisco of spinach chloroplasts. All above implied that Ca(2+)-depletion could disturb light energy conversion of chloroplasts strongly, which could be reversed by Ce(3+). 相似文献
20.
Carbon dioxide exchange, transpiration, chlorophyll fluorescence and light scattering of leaves of Lycopersicom esculentum, Helianthus annuus and Arbutus unedo were measured simultaneously before and after abscission of leaves. Scattering of a weak green measuring beam was used to monitor water fluxes across the thylakoid membranes of the mesophyll. When leaves were cut under water, stomata initially closed partially and then occasionally exhibited distinct regulatory oscillations. As stomata closed, light scattering decreased indicating water influx into the mesophyll. Stomatal oscillations were accompanied, with small but noticeable phase shifts, by oscillations of water fluxes at the thylakoid level. These fluxes could be distinguished from the water fluxes accompanying light-dependent ion pumping across the thylakoids by the concomitant chlorophyll fluorescence signals. The latter record energy-dependent ion fluxes in addition to redox changes of the electron-transport chain. As stomata closed partially after cutting a leaf under water, photosynthesis decreased. In Arbutus unedo and Helianthus annuus leaves, transient stomatal closure was insufficient to account for transient inhibition of photosynthesis which appeared to be brought about by transfer of an inhibitory solute through the petiole into the mesophyll. This solute also stimulated respiration in the dark. When leaves were cut in air, stomata opened transiently (Iwanoff effect) before wilting enforced closure. Photosynthesis followed the stomatal responses, increasing during opening and decreasing during closure.Dedicated to Professor H. Ullrich on the occasion of his 85th birthday 相似文献