首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation plays an important role in regulating soluble L-glutamic acid decarboxylase (GAD) and membrane-associated GAD activity. Previously, we reported the effect of phosphorylation on the two well-defined GAD isoforms, namely, GAD65 and GAD67, using highly purified preparations of recombinant human brain GAD65 (hGAD65) and GAD67. GAD65 was activated by phosphorylation, while GAD67 was inhibited by phosphorylation. The effect of phosphorylation on GAD65 and GAD67 could be reversed by treatment with protein phosphatases. We further demonstrated that protein kinase A (PKA) and protein kinase C isoform ε were the protein kinases responsible for phosphorylation and regulation of GAD67 and GAD65, respectively. In the current study, using MALDI-TOF, a total of four potential phosphorylation sites were identified in GAD65, two of which (threonine-95 (T-95) and Ser-417) were not reported previously. We have identified one specific phosphorylation site, (T95), in hGAD65 that can be phosphorylated by kinase C ε (PKCε) using MALDITOF. When T95 is mutated to alanine, hGAD65 could no longer be phosphorylated by PKCε, and the effect of PKC-mediated activation on hGAD65 is abolished. However, when T95 is mutated to glutamic acid, which mimics the phosphorylation status of hGAD65, the activity was greatly increased. An increase of GAD65 activity by 55 % compared to the wild type hGAD65 was observed indicating that mutation of T95 to glutamic acid mimics the effect of phosphorylation. A model depicting the role of phosphorylation of GAD65 in regulation of GABA neurotransmission is presented.  相似文献   

2.
Wei J  Davis KM  Wu H  Wu JY 《Biochemistry》2004,43(20):6182-6189
Previously, we reported that protein phosphorylation plays an important role in regulating soluble l-glutamic acid decarboxylase (GAD) [Bao, J. (1995) J. Biol. Chem. 270, 6464-6467] and membrane-associated GAD activity [Hsu, C. C. (1999) J. Biol. Chem. 274, 24366-24371]. Here, we report the effect of phosphorylation on the two well-defined GAD isoforms, namely, GAD65 and GAD67, using highly purified preparations of recombinant human brain GAD65 and GAD67. GAD65 was activated by phosphorylation, while GAD67 was inhibited by phosphorylation. The effect of phosphorylation on GAD65 and GAD67 could be reversed by treatment with protein phosphatases. We further demonstrate that protein kinase A (PKA) and protein kinase C isoform epsilon are the protein kinases responsible for phosphorylation and regulation of GAD67 and GAD65, respectively. Direct phosphorylation of GAD65 and GAD67 was demonstrated by incorporation of [(32)P] from [gamma-(32)P]ATP into purified GAD65 and GAD67 and immunoblotting assay using anti-phosphoserine/threonine antibodies. We have identified one specific phosphorylation site, threonine 91 (T91), in hGAD67 that can be phosphorylated by PKA using MALDI-TOF. Site-directed mutation of T91 to alanine abolished PKA-mediated phosphorylation and inhibition of GAD activity. Furthermore, mutation of T91 to aspartic acid or glutamic acid mimics the effect of phosphorylation. A model depicting the effect of phosphorylation on GAD activity upon neuronal stimulation is also proposed.  相似文献   

3.
The smaller isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major islet autoantigen in autoimmune type 1 diabetes mellitus (T1DM). Transgenic plants expressing human GAD65 (hGAD65) are a potential means of direct oral administration of the islet autoantigen in order to induce tolerance and prevent clinical onset of disease. We have previously reported the successful generation of transgenic tobacco and carrot that express immunoreactive, full-length hGAD65. In the present study, we tested the hypothesis that the expression levels of recombinant hGAD65 in transgenic plants can be increased by targeting the enzyme to the plant cell cytosol and by mediating expression through the potato virus X (PVX) vector. By substituting the NH2-terminal region of hGAD65 with a homologous region of rat GAD67, a chimeric GAD671-87/GAD6588-585 molecule was expressed in transgenic tobacco plants. Immunolocalization analysis showed that immunoreactive GAD67/65 was found in the plant cell cytosol. By using a radio-immuno assay with human serum from a GAD65 autoantibody-positive T1DM patient, the highest expression level of the recombinant GAD67/65 protein was estimated to be 0.19% of the total soluble protein, compared to only 0.04% of wild-type hGAD65. Transient expression of wild-type, full-length hGAD65 in N. benthamiana mediated by PVX infection was associated with expression levels of immunoreactive protein as high as 2.2% of total soluble protein. This substantial improvement of the expression of hGAD65 in plants paves the way for immunoprevention studies of oral administration of GAD65-containing transgenic plant material in animal models of spontaneous autoimmune diabetes.  相似文献   

4.
The functional role of glutamate decarboxylase (GAD) and its product GABA in pancreatic islets has remained elusive. Mouse beta-cells express the larger isoform GAD67, whereas human islets express only the smaller isoform GAD65. We have generated two lines of transgenic mice expressing human GAD65 in pancreatic beta-cells (RIP7-hGAD65, Lines 1 and 2) to study the effect that GABA generated by this isoform has on islet cell function. The ascending order of hGAD65 expression and/or activity in beta-cells was Line 1 heterozygotes < Line 2 heterozygotes < Line 1 homozygotes. Line 1 heterozygotes have normal glucose tolerance, whereas Line 1 homozygotes and Line 2 heterozygotes exhibit impaired glucose tolerance and inhibition of insulin secretion in vivo in response to glucose. In addition, fasting levels of blood glucose are elevated and insulin is decreased in Line 1 homozygotes. Pancreas perfusion experiments suggest that GABA generated by GAD65 may function as a negative regulator of first-phase insulin secretion in response to glucose by affecting a step proximal to or at the K(ATP)(+) channel.  相似文献   

5.
GABA is synthesized from glutamate by glutamate decarboxylase (GAD), which exists in two isoforms, that is, GAD65 and GAD67. In line with GAD65 being located in the GABAergic synapse, several studies have demonstrated that this isoform is important during sustained synaptic transmission. In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA(A) receptor activity. An impaired tonic inhibition in GAD65-/- mice was revealed demonstrating a significant role of GAD65 in the synthesis of GABA acting extrasynaptically. The correlation between an altered tonic inhibition and metabolic events as well as the functional and metabolic role of GABA synthesized by GAD65 was further investigated in vivo. Tonic inhibition and the demand for biosynthesis of GABA were augmented by injection of kainate into GAD65-/- and GAD65+/+ mice. Moreover, [1-(13) C]glucose and [1,2-(13) C]acetate were administered to study neuronal and astrocytic metabolism concomitantly. Subsequently, cortical and hippocampal extracts were analyzed by NMR spectroscopy and mass spectrometry, respectively. Although seizure activity was induced by kainate, neuronal hypometabolism was observed in GAD65+/+ mice. In contrast, kainate evoked hypermetabolism in GAD65-/- mice exhibiting deficiencies in tonic inhibition. These findings underline the importance of GAD65 for synthesis of GABA destined for extrasynaptic tonic inhibition, regulating epileptiform activity.  相似文献   

6.
Wei J  Lin CH  Wu H  Jin Y  Lee YH  Wu JY 《Journal of neurochemistry》2006,98(5):1688-1695
Previously, we reported that l-glutamic acid decarboxylase isoform 65 (GAD65) could be cleaved in vitro to release a stable truncated form which lacks amino acid 1-69 from the N-terminus, GAD65(Delta1-69). However, whether such a truncated form is also present under certain physiological conditions remains elusive. In the present study, we showed that, upon sustained neuronal stimulation, GAD65 could be cleaved into a truncated form in a rat synaptosomal preparation. This truncated form had similar electrophoretic mobility to purified recombinant human GAD65(Delta1-69). Furthermore, we demonstrated that this conversion was calcium dependent. Calcium-chelating reagents such as EDTA and 1,2-bis-(o-aminphenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetra-acetoxy-methyl ester prevented the cleavage of GAD65. In addition, our data suggested that calpain, a calcium-dependent cysteine protease, is activated upon neuronal stimulation and could be responsible for the conversion of full-length GAD65 to truncated GAD65 in the brain. Moreover, calpain inhibitors such as calpain inhibitor I or calpastatin could block the cleavage. Results of our in vitro cleavage assay using purified calpain and immunopurified rat GAD65 also supported the idea that GAD65 could be directly cleaved by calpain.  相似文献   

7.
Maternal infection during pregnancy increases the risk of neurodevelopmental disorders in the offspring. In addition to its influence on other neuronal systems, this early-life environmental adversity has been shown to negatively affect cortical γ-aminobutyric acid (GABA) functions in adult life, including impaired prefrontal expression of enzymes required for GABA synthesis. The underlying molecular processes, however, remain largely unknown. In the present study, we explored whether epigenetic modifications represent a mechanism whereby maternal infection during pregnancy can induce such GABAergic impairments in the offspring. We used an established mouse model of prenatal immune challenge that is based on maternal treatment with the viral mimetic poly(I:C). We found that prenatal immune activation increased prefrontal levels of 5-methylated cytosines (5mC) and 5-hydroxymethylated cytosines (5hmC) in the promoter region of GAD1, which encodes the 67-kDa isoform of the GABA-synthesising enzyme glutamic acid decarboxylase (GAD67). The early-life challenge also increased 5mC levels at the promoter region of GAD2, which encodes the 65-kDa GAD isoform (GAD65). These effects were accompanied by elevated GAD1 and GAD2 promoter binding of methyl CpG-binding protein 2 (MeCP2) and by reduced GAD67 and GAD65 mRNA expression. Moreover, the epigenetic modifications at the GAD1 promoter correlated with prenatal infection-induced impairments in working memory and social interaction. Our study thus highlights that hypermethylation of GAD1 and GAD2 promoters may be an important molecular mechanism linking prenatal infection to presynaptic GABAergic impairments and associated behavioral and cognitive abnormalities in the offspring.  相似文献   

8.

Background

Autoantibodies to GAD65 (anti-GAD65) are present in the sera of 70–80% of patients with type 1 diabetes (T1D), but antibodies to the structurally similar 67 kDa isoform GAD67 are rare. Antibodies to GAD67 may represent a cross-reactive population of anti-GAD65, but this has not been formally tested.

Methodology/Principal Findings

In this study we examined the frequency, levels and affinity of anti-GAD67 in diabetes sera that contained anti-GAD65, and compared the specificity of GAD65 and GAD67 reactivity. Anti-GAD65 and anti-GAD67 were measured by radioimmunoprecipitation (RIP) using 125I labeled recombinant GAD65 and GAD67. For each antibody population, the specificity of the binding was measured by incubation with 100-fold excess of unlabeled GAD in homologous and heterologous inhibition assays, and the affinity of binding with GAD65 and GAD67 was measured in selected sera. Sera were also tested for reactivity to GAD65 and GAD67 by immunoblotting. Of the 85 sera that contained antibodies to GAD65, 28 contained anti–GAD67 measured by RIP. Inhibition with unlabeled GAD65 substantially or completely reduced antibody reactivity with both 125I GAD65 and with 125I GAD67. In contrast, unlabeled GAD67 reduced autoantibody reactivity with 125I GAD67 but not with 125I GAD65. Both populations of antibodies were of high affinity (>1010 l/mol).

Conclusions

Our findings show that autoantibodies to GAD67 represent a minor population of anti-GAD65 that are reactive with a cross-reactive epitope found also on GAD67. Experimental results confirm that GAD65 is the major autoantigen in T1D, and that GAD67 per se has very low immunogenicity. We discuss our findings in light of the known similarities between the structures of the GAD isoforms, in particular the location of a minor cross-reactive epitope that could be induced by epitope spreading.  相似文献   

9.
GAD67, the larger isoform of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase, is a hydrophilic soluble molecule, postulated to localize at nerve terminals and membrane compartments by heterodimerization with the smaller membrane-anchored isoform GAD65. We here show that the dimerization region in GAD65 is distinct from the NH(2)-terminal membrane-anchoring region and that a membrane anchoring GAD65 subunit can indeed target a soluble subunit to membrane compartments by dimerization. However, only a fraction of membrane-bound GAD67 is engaged in a heterodimer with GAD65 in rat brain. Furthermore, in GAD65-/- mouse brain, GAD67, which no longer partitions into the Triton X-114 detergent phase, still anchors to membranes at similar levels as in wild-type mice. Similarly, in primary cultures of neurons derived from GAD65-/- mice, GAD67 is targeted to nerve terminals, where it co-localizes with the synaptic vesicle marker SV2. Thus, axonal targeting and membrane anchoring is an intrinsic property of GAD67 and does not require GAD65. The results suggest that three distinct moieties of glutamate decarboxylase localize to membrane compartments, an amphiphilic GAD65 homodimer, an amphiphilic GAD65/67 heterodimer, tethered to membranes via the GAD65 subunit, and a hydrophilic GAD67 homodimer, which associates with membranes by a distinct mechanism.  相似文献   

10.
In this study we tested the hypothesis that the 65-kDa isoform of glutamate decarboxylase (GAD(65)) mediates activity-dependent GABA synthesis as invoked by seizures in anesthetized rats. GABA synthesis was measured following acute GABA-transaminase inhibition by gabaculine using spatially localized (1)H NMR spectroscopy before and after bicuculline-induced seizures. Experiments were conducted with animals pre-treated with vigabatrin 24 h earlier in order to reduce GAD(67) protein and also with non-treated controls. GAD isoform content was quantified by immunoblotting. GABA was higher in vigabatrin-treated rats compared to non-treated controls. In vigabatrin-treated animals, GABA synthesis was 28% lower compared to controls [p < 0.05; vigabatrin-treated, 0.043 +/- 0.011 micromol/(g min); non-treated, 0.060 +/- 0.014 micromol/(g min)] and GAD(67) was 60% lower. No difference between groups was observed for GAD(65). Seizures increased GABA synthesis in both control [174%; control, 0.060 +/- 0.014 micromol/(g min) vs. seizures, 0.105 +/- 0.043 micromol/(g min)] and vigabatrin-treated rats [214%; control, 0.043 +/- 0.011 micromol/(g min); seizures, 0.092 +/- 0.018 micromol/(g min)]. GAD(67) could account for at least half of basal GABA synthesis but only 20% of the two-fold increase observed in vigabatrin-treated rats during seizures. The seizure-induced activation of GAD(65) in control cortex occurs concomitantly with a 2.3-fold increase in inorganic phosphate, known to be a potent activator of apoGAD(65)in vitro. Our results are consistent with a major role for GAD(65) in activity-dependent GABA synthesis.  相似文献   

11.
Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients   总被引:2,自引:0,他引:2  
Autoantibodies to the 65-kDa isoform of glutamate decarboxylase GAD65 (GAD65Ab) are strong candidates for a pathological role in Stiff-Person syndrome (SPS). We have analyzed the binding specificity of the GAD65Ab in serum and cerebrospinal fluid (CSF) of 12 patients with SPS by competitive displacement studies with GAD65-specific rFab-derived from a number of human and mouse mAbs specific for different determinants on the Ag. We demonstrate considerable differences in the epitope specificity when comparing paired serum and CSF samples, suggesting local stimulation of B cells in the CSF compartment of these patients. Moreover, these autoantibodies strongly inhibit the enzymatic activity of GAD65, thus blocking the formation of the neurotransmitter gamma-aminobutyric acid. The capacity of the sera to inhibit the enzymatic activity of GAD65 correlated with their binding to a conformational C-terminal Ab epitope. Investigation of the inhibitory mechanism revealed that the inhibition could not be overcome by high concentrations of glutamate or the cofactor pyridoxal phosphate, suggesting a noncompetitive inhibitory mechanism. Finally, we identified a linear epitope on amino acids residues 4-22 of GAD65 that was recognized solely by autoantibodies from patients with SPS but not by serum from type 1 diabetes patients. A mAb (N-GAD65 mAb) recognizing this N-terminal epitope was successfully humanized to enhance its potential therapeutic value by reducing its overall immunogenicity.  相似文献   

12.
Human brain glutamate decarboxylase 65 (hGAD65) was found to exist as full-length and truncated forms when the glutathione S-transferase-tagged hGAD65 fusion protein was subjected to factor Xa cleavage. The truncated form is produced by cleavage at arginine 69 based on N-terminal amino acid sequence analysis, and has a molecular weight of 58 kD. It is resistant to further factor Xa cleavage or mild trypsin treatment and is more active and more stable than the full-length form. Both the full-length and truncated forms of GAD are also observed in brain preparations in the presence of protease inhibitors. Furthermore, full-length GAD could be converted to the truncated form by endogenous proteases, suggesting that the conversion of full-length to truncated GAD mediated by endogenous protease may represent an important mechanism in the regulation of GABA biosynthesis in the brain.  相似文献   

13.
14.
The 65 kDa human isoform of glutamate decarboxylase, GAD65, plays a central role in neurotransmission in higher vertebrates and is a typical autoantigen in several human autoimmune diseases, such as insulin-dependent diabetes mellitus (IDDM), Stiff-man syndrome and autoimmune polyendocrine syndrome type I. In autoimmune diabetes, an attack of inflammatory cells to endocrine pancreatic beta-cells leads to their complete destruction, eventually resulting in the inability to produce sufficient insulin for the body's requirements. Even though the etiology of beta-cell destruction is still a matter of debate, the role and antigenic potency of GAD65 are widely recognized. Herein a model of GAD65 is presented, which is based on the recently solved crystal structures of mammalian DOPA decarboxylase and of bacterial glutamate decarboxylase. The model provides for the first time a detailed and accurate structure of the GAD65 subunit (all three domains) and of its dimeric quaternary assembly. It reveals the structural basis for specific antibody recognition to GAD65 as opposed to GAD67, the other human isoform, which shares 81% sequence similarity with GAD65 and is much less antigenic. Literature data on monoclonal antibody binding are perfectly consistent with the detailed features of the model, which allows explanation of several findings on GAD65 immunogenicity. Importantly, by analyzing the active site, we identified the residues most likely involved in catalysis and substrate recognition, paving the way for rational mutagenesis studies of the GAD65 reaction mechanism, specificity and inhibition.  相似文献   

15.
BACKGROUND AND AIMS: Glutamic acid decarboxylase (GAD, EC 4.1.1.15) catalyses the conversion of glutamate to gamma-aminobutyric acid (GABA). The 65 kDa isoform, GAD65 is a potent autoantigen in type 1 diabetes, whereas GAD67 is not. A hybrid cDNA was created by fusing a human cDNA for amino acids 1-101 of GAD67 to a human cDNA for amino acids 96-585 of GAD65; the recombinant (r) protein was expressed in yeast and was shown to have equivalent immunoreactivity to mammalian brain GAD with diabetes sera. We here report on enzymatic and molecular properties of rGAD67/65. METHODS: Studies were performed on enzymatic activity of rGAD67/65 by production of 3H-GABA from 3H-glutamate, enzyme kinetics, binding to the enzyme cofactor pyridoxal phosphate (PLP), stability according to differences in pH, temperature and duration of storage, and antigenic reactivity with various GAD-specific antisera. RESULTS: The properties of rGAD67/65 were compared with published data for mammalian brain GAD (brackets). These included a specific enzyme activity of 22.7 (16.7) nKat, optimal pH for enzymatic activity 7.4 (6.8), K(m) of 1.3 (1.3) mM, efficient non-covalent binding to the cofactor PLP, and high autoantigenic potency. The stability of rGAD67/65 was optimal over 3 months at -80 degrees C, or in lyophilized form at -20 degrees C. CONCLUSIONS: Hybrid rGAD67/65 has enzymatic and other properties similar to those of the mixed isoforms of GAD in preparations from mammalian brain as described elsewhere, in addition to its previously described similar immunoreactivity.  相似文献   

16.
The mechanisms involved in the targeting of proteins to different cytosolic compartments are still largely unknown. In this study we have investigated the targeting signal of the 65-kD isoform of glutamic acid decarboxylase (GAD65), a major autoantigen in two autoimmune diseases: Stiff-Man syndrome and insulin-dependent diabetes mellitus. GAD65 is expressed in neurons and in pancreatic beta-cells, where it is concentrated in the Golgi complex region and in proximity to GABA- containing vesicles. GAD65, but not the similar isoform GAD67 which has a more diffuse cytosolic distribution, is palmitoylated within its first 100 amino acids (a.a.). We have previously demonstrated that the domain corresponding to a.a. 1-83 of GAD65 is required for the targeting of GAD65 to the Golgi complex region. Here we show that this domain is sufficient to target an unrelated protein, beta- galactosidase, to the same region. Site-directed mutagenesis of all the putative acceptor sites for thiopalmitoylation within this domain did not abolish targeting of GAD65 to the Golgi complex region. The replacement of a.a. 1-29 of GAD67 with the corresponding a.a. 1-27 of GAD65 was sufficient to target the otherwise soluble GAD67 to the Golgi complex region. Conversely, the replacement of a.a. 1-27 of GAD65 with a.a. 1-29 of GAD67 resulted in a GAD65 protein that had a diffuse cytosolic distribution and was primarily hydrophilic, suggesting that targeting to the Golgi complex region is required for palmitoylation of GAD65. We propose that the domain corresponding to a.a. 1-27 of GAD65, contains a signal required for the targeting of GAD65 to the Golgi complex region.  相似文献   

17.
In the present study, we investigated changes in glutamate decarboxylase 65 (GAD65) and GAD67 immunoreactivity and protein levels in the main olfactory bulb (MOB) after 5 min of transient forebrain ischemia in gerbils. GAD65 immunoreactivity in the sham-operated group was shown in neurons and neuropil except for the somata of granule cells. GAD65 immunoreactivity was increased in neurons in the external plexiform layer 60 days after ischemia, and in mitral cells 30 and 60 days after ischemia. GAD67 immunoreactivity in the sham-operated group was shown in periglomerular cells, neuron in the external plexiform layer and granule cells with neuropil. GAD67 immunoreactivity in periglomerular cells was increased 10, 45 and 60 days after ischemia. GAD67 immunoreactivity in neurons in the external plexiform layer was increased 10 and 15 days after ischemia. Mitral cells showed strong GAD67 immunoreactivity 10 days after ischemia. However, GAD67 immunoreactivity in the granule cells was not changed with time after ischemia. In Western blot analysis for GAD65 and GAD67 protein levels in the ischemic gerbil MOB, GAD65 level was not changed after ischemia; GAD67 level was increased 10 days after ischemia. These results suggest that transient ischemia causes changes in GAD65 and GAD67 immunoreactivity in the gerbil MOB, and this change may induce a malfunction in olfaction after an ischemic insult. Ki-Yeon Yoo and In Koo Hwang equally contributed to this article.  相似文献   

18.
19.
The GAD65 epitope immunoglobulin binding pattern in cord blood of children (n=37), who later developed type 1 diabetes at 3.2-14.9 years of age, was analyzed. First, the binding at diagnosis was compared with that in the cord blood serum. The next comparison was between the cord blood serum and the mothers' serum taken at delivery. Basal GAD65 binding levels were determined in Protein A Sepharose-based radiobinding assays with (35)S-labeled human and rat GAD65, rat GAD67 and GAD65/67 fusion proteins representing N-terminal (N), middle (M) and C-terminal (C) epitopes. In the first comparison, 28/37 children had GAD65 binding above 2.44 relative units (RU) (upper three quartiles), representing a marked increase from birth in the binding to human GAD65 (p<0.0001), rat GAD65 (p<0.0001), N- (p=0.04), M- (p<0.0001), C- (p=0.001), and M + C-epitopes (p<0.0001), but not to rat GAD67. At birth, 9/37 had GAD65 binding above 1.56 RU (upper quartile) demonstrating that their binding of human (35)S-GAD65 was higher in cord blood than in the mother (p=0.008). Higher cord blood binding was also observed for the N- (p=0.02) terminal epitope but not for rat GAD65, rat GAD67, and the remaining epitopes. These data suggest that differences in the epitope GAD65 binding between mother and child at birth are limited. In contrast, the epitope pattern at diagnosis differed from that at birth, supporting the view that disease-associated epitopes develop between birth and diagnosis.  相似文献   

20.
We investigated distribution and age-related changes in two isoforms of GABA synthesizing enzymes, glutamic acid decarboxylase (GAD) 65 and 67, in the lumbar levels (L(5)-L(6)) of the dog spinal cord. Male German shepherds were used at 1-2 years (young adult dogs) and 10-12 years (aged dogs) of age. GAD65 immunoreaction was observed in neuropil, not in cell bodies, in all laminae of the adult lumbar spinal cord: Many punctate GAD65-immunoreactive structures were shown in all laminae. The density of GAD65 immunoreactive structures was highest in laminae I-III, and lowest in lamina VII. In the aged dog, the distribution pattern of GAD65 immunoreactivity was similar to that in the adult dog; however the density of GAD65-immunoreactive structures and its protein levels were significantly increased in the aged lumbar spinal cord. GAD67 immunoreaction in the adult dog was also distributed in all laminae of the lumbar spinal cord like GAD65; however, we found that small GAD67-immunoreactive cell bodies were observed in laminae II, III and VIII. In the aged dogs, GAD67 immunoreactivity and its protein levels were also increased compared to those in the adult group. In conclusion, our results indicate that the distribution of GAD65-immunoreactive structures is different from GAD67-immunoreactive structures and that their immunoreactivity in the aged dogs is much higher than the adult dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号