首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We originally identified StarD10 as a protein overexpressed in breast cancer that cooperates with the ErbB family of receptor tyrosine kinases in cellular transformation. StarD10 contains a steroidogenic acute regulatory protein (StAR/StarD1)-related lipid transfer (START) domain that is thought to mediate binding of lipids. We now provide evidence that StarD10 interacts with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by electron spin resonance measurement. Interaction with these phospholipids was verified in a fluorescence resonance energy transfer-based assay with 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled lipids. Binding was not restricted to lipid analogs since StarD10 selectively extracted PC and PE from small unilamellar vesicles prepared with endogenous radiolabeled lipids from Vero monkey kidney cells. Mass spectrometry revealed that StarD10 preferentially selects lipid species containing a palmitoyl or stearoyl chain on the sn-1 and an unsaturated fatty acyl chain (18:1 or 18:2) on the sn-2 position. StarD10 was further shown to bind lipids in vivo by cross-linking of protein expressed in transfected HEK-293T cells with photoactivable phosphatidylcholine. In addition to a lipid binding function, StarD10 transferred PC and PE between membranes. Interestingly, these lipid binding and transfer specificities distinguish StarD10 from the related START domain proteins Pctp and CERT, suggesting a distinct biological function.  相似文献   

2.
Caspase-associated recruitment domains (CARDs) are protein interaction domains that participate in activation or suppression of CARD-carrying members of the caspase family of apoptosis-inducing proteases. A novel CARD-containing protein was identified that is overexpressed in some types of cancer and that binds and suppresses activation of procaspase-9, which we term TUCAN (tumor-up-regulated CARD-containing antagonist of caspase nine). The CARD domain of TUCAN selectively binds itself and procaspase-9. TUCAN interferes with binding of Apaf1 to procaspase-9 and suppresses caspase activation induced by the Apaf1 activator, cytochrome c. Overexpression of TUCAN in cells by stable or transient transfection inhibits apoptosis and caspase activation induced by Apaf1/caspase-9-dependent stimuli, including Bax, VP16, and staurosporine, but not by Apaf1/caspase-9-independent stimuli, Fas and granzyme B. High levels of endogenous TUCAN protein were detected in several tumor cell lines and in colon cancer specimens, correlating with shorter patient survival. Thus, TUCAN represents a new member of the CARD family that selectively suppresses apoptosis induced via the mitochondrial pathway for caspase activation.  相似文献   

3.
Human epidermal growth factor receptor 2 (HER2) belongs to the EGFR family of receptor tyrosine kinases that comprises four members. As opposed to the other family members, HER2 does not require ligand binding for activation. Hence, HER2 molecules can undergo spontaneous dimerization, autophosphorylation and activation of downstream signaling pathways especially under conditions of overexpression, a commonly encountered phenomenon in breast cancer. In this study, we sought to investigate the mechanism by which HER2 musters signaling and transformation potency. We show that HER2 overexpression per se induces a significant increase in basal mitogenic and cell survival signaling, which was augmented by EGF stimulation. Inhibition of the normally expressed EGFR significantly suppressed the ability of overexpressed HER2 to induce enhanced signaling and cell transformation, suggesting that HER2 requires the EGFR and potentially other members to maximize its signaling and transformation potency. The novel observation revealed by prolonged EGF stimulation studies was the biphasic signaling pattern in the presence of HER2 overexpression that suggested the induction of a short-circuited mechanism, permitting sustained signaling. Our results further show that the short-circuited signaling was due to the re-shuttling of internalized receptor molecules to the Rab11-positive recycling endosomes, while suppressing channeling to the LAMP1-positive lysosome-targeting endosomes. Therefore, HER2's oncogenicity is dependent, not only on its constitutively active nature, but also on its ability to muster collaborative signaling from family members through modulation of ligand-induced receptor regulation.  相似文献   

4.
Rab family proteins are generally known as regulators of protein transport and trafficking. A number of Rab proteins have been implicated in cancer development and/or progression. Here we report the identification of a novel Rab-like protein, which we have named RBEL1 (Rab-like protein 1) for its higher similarity to the Rab subfamily members. We have characterized two isoforms of RBEL1 including the predominant RBEL1A and the less abundant RBEL1B that results from alternative splicing. Both isoforms harbor conserved N-terminal guanine trinucleotide phosphate (GTP) binding domains and, accordingly, are capable of binding to GTP. Both isoforms contain variable C termini and exhibit differential subcellular localization patterns. Unlike known Rabs that are mostly cytosolic, RBEL1B predominantly resides in the nucleus, whereas RBEL1A is localized primarily to the cytosol. Interestingly, a point mutation affecting RBEL1B GTP binding also alters the ability of mutant protein to accumulate in the nucleus, suggesting GTP binding potential to be important for RBEL1B nuclear localization. Our results also indicate that RBEL1A is overexpressed in about 67% of primary breast tumors. Thus, RBEL1A and RBEL1B are novel Rab-like proteins that localize in the nucleus and cytosol and may play an important role in breast tumorigenesis.  相似文献   

5.
Fyn is a Src family tyrosine kinase expressed abundantly in neurons and believed to have specific functions in the brain. To understand the function of Fyn tyrosine kinase, we attempted to identify Fyn Src homology 2 (SH2) domain-binding proteins from a Nonidet P-40-insoluble fraction of the mouse brain. beta-Adducin, an actin filament-associated cytoskeletal protein, was isolated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. beta-Adducin was tyrosine phosphorylated by coexpression with wild type but not with a kinase-negative form of Fyn in COS-7 cells. Cell staining analysis showed that coexpression of beta-adducin with Fyn induced translocation of beta-adducin from the cytoplasm to the periphery of the cells where it was colocalized with actin filaments and Fyn. These findings suggest that tyrosine-phosphorylated beta-adducin associates with the SH2 domain of Fyn and colocalizes under plasma membranes.  相似文献   

6.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

7.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   

8.
A new SH2-containing sequence, SHC, was isolated by screening cDNA libraries with SH2 representative DNA probes. The SHC cDNA is predicted to encode overlapping proteins of 46.8 and 51.7 kd that contain a single C-terminal SH2 domain, and an adjacent glycine/proline-rich motif with regions of homology with the alpha 1 chain of collagen, but no identifiable catalytic domain. Anti-SHC antibodies recognized three proteins of 46, 52, and 66 kd in a wide range of mammalian cell lines. These SHC proteins complexed with and were phosphorylated by activated epidermal growth factor receptor. The physical association of SHC proteins with activated receptors was recreated in vitro by using a bacterially expressed SHC SH2 domain. NIH 3T3 mouse fibroblasts that constitutively overexpressed SHC acquired a transformed phenotype in culture and formed tumors in nude mice. These results suggest that the SHC gene products couple activated growth factor receptors to a signaling pathway that regulates the proliferation of mammalian cells.  相似文献   

9.
Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.  相似文献   

10.

Background

Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC.

Methodology/Principal Findings

A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration.

Conclusion/Significance

Our work shows that claudin-7 is significantly upregulated in EOC and that it may be functionally involved in ovarian carcinoma invasion. CLDN7 may therefore represent potential marker for ovarian cancer detection and a target for therapy.  相似文献   

11.
《Cell reports》2023,42(8):112936
  1. Download : Download high-res image (75KB)
  2. Download : Download full-size image
  相似文献   

12.
The high-affinity binding of the growth factor receptor-bound protein 2 (Grb2) SH2 domain to tyrosine-phosphorylated cytosolic domains of receptor tyrosine kinases (RTKs) is an attractive target for therapeutic intervention in many types of cancer. We report here two crystal forms of a complex between the Grb2 SH2 domain and a potent non-phosphorus-containing macrocyclic peptide mimetic that exhibits significant anti-proliferative effects against erbB-2-dependent breast cancers. This agent represents a "second generation" inhibitor with greatly improved binding affinity and bio-availability compared to its open-chain counterpart. The structures were determined at 2.0A and 1.8A with one and two domain-swapped dimers per asymmetric unit, respectively. The mode of binding and specific interactions between the protein and the inhibitor provide insight into the high potency of this class of macrocylic compounds and may aid in further optimization as part of the iterative rational drug design process.  相似文献   

13.
J den Hertog  S Tracy    T Hunter 《The EMBO journal》1994,13(13):3020-3032
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) is a transmembrane protein with a short extracellular domain (123 amino acids) and two cytoplasmically localized protein-tyrosine phosphatase (PTP) domains. Here we report that RPTP alpha is constitutively phosphorylated on tyrosine in NIH 3T3 mouse fibroblasts. The in vivo tyrosine phosphorylation site was localized to the C-terminus of RPTP alpha by phosphopeptide mapping experiments using in vivo and in vitro 32P-labeled RPTP alpha. The identity of this site as Tyr789, located five residues from the C-terminus, was confirmed by site-directed mutagenesis. Transient overexpression of c-Src together with RPTP alpha in human embryonic kidney 293 cells increased phosphorylation of Tyr789, suggesting that c-Src may phosphorylate RPTP alpha in vivo. RPTP alpha had autodephosphorylation activity in vitro. When expressed in 293 cells the level of Tyr789 phosphorylation was higher in a non-functional mutant of RPTP alpha than in wild type RPTP alpha, indicating that RPTP alpha may have autodephosphorylation activity in vivo as well. The sequence on the C-terminal side of Tyr789 (YANF) fits the consensus binding site for the SH3-SH2-SH3 adaptor protein GRB2 (YXNX). We show that RPTP alpha, but not a mutant of RPTP alpha with a Tyr-->Phe mutation at position 789, bound to GRB2 in vitro. In addition, RPTP alpha co-immunoprecipitated with GRB2 from NIH 3T3 cells, demonstrating that GRB2 bound to RPTP alpha in vivo. The guanine nucleotide releasing factor for the Ras GTPase, Son of sevenless (Sos), which associates with GRB2 via its SH3 domains, was not detected in RPTP alpha immunoprecipitates. Our results suggest a role for RPTP alpha in attenuation of GRB2-mediated signaling.  相似文献   

14.
T cell-specific Src family tyrosine kinase, p56lck, plays crucial roles in T cell differentiation, activation, and proliferation. These multiple functions of p56lck are believed to be conducted through the protein-protein interactions with various cellular signaling proteins. To clarify the mechanisms through which p56lck contributes to T cell signaling, we identified the proteins binding to the Src homology 2 (SH2) domain of p56lck through a tyrosine phosphorylation-dependent yeast two-hybrid screening. Subsequent characterization of positive clones revealed the presence of a protein of 366 aa named Lad (Lck-associated adapter protein), which is a potential murine homologue of previously reported TSAd, a T cell-specific adapter protein. Lad contains several protein-protein interaction domains including a zinc-finger motif, an SH2 domain, a proline-rich SH3 binding motif, and several phosphotyrosine sites. Furthermore, Lad was tyrosine phosphorylated and associated with p56lck in vivo and redistributed from cytoplasm to the plasma membrane in a T cell activation-dependent manner. Moreover in T cells, IL-2 promoter activity was enhanced upon coexpression of Lad but was inhibited by the coexpression of antisense Lad RNA. These characteristics of Lad suggest that Lad play an essential role as an adapter protein in p56lck-mediated T cell signaling.  相似文献   

15.
Identification of more and more novel tumor antigens and autoantibodies will lead to the earlier diagnosis, better prognosis prediction, and more efficient therapy of cancer in the future. Immunoproteomics techniques have successfully been used for finding novel cancer biomarkers in different subgroups of cancer patients. HER2 is a marker for an aggressive breast cancer, particularly in node-positive (NP) cases. The aim of our study was to identify antigens eliciting a humoral immune response in HER2+ and HER2- NP breast cancers by two-dimensional electrophoresis (2D), Western blotting, and mass spectrometry. Sera from 18 women with newly diagnosed NP breast cancer (9 HER2+ and 9 HER2-) and 9 healthy volunteers were individually investigated for the presence of antibodies to MCF7 breast cancer cell line proteome. Reactive spots in 2D blots were matched to stained 2D gels. Twenty-eight of matched spots were identified by mass spectrometry. Among them were LDH-A, glyceraldehydes-3-phosphate dehydrogenase, enolase-α, phosphoglycerate dehydrogenase, proteasome 26S non-ATPase subunit 13, triosephosphate isomerase, hnRNP K, hsp27, hsp90, prohibitin, nucleophosmin, 14-3-3?, PP2A regulatory subunit, and ribonuclease inhibitor-angiogenin. The five former antigens were more commonly reacted with sera from HER2+ cases, and the three latter antigens were more commonly reacted with sera from HER2- cases. Noteworthy, the antigenicity of the 28 spots showed a few differences when SBR3 cell line was used as the source of antigens. Although some of the identified antigens were previously defined as tumor antigens, others were novel. Further investigations for their utilizations as markers for breast cancer diagnosis, progression, and therapy are warranted.  相似文献   

16.
The Src homology 2 (SH2) domain-containing protein SH2-Bbeta binds to and is a substrate of the growth hormone (GH) and cytokine receptor-associated tyrosine kinase JAK2. SH2-Bbeta also binds, via its SH2 domain, to multiple activated growth factor receptor tyrosine kinases. We have previously implicated SH2-Bbeta in GH and platelet-derived growth factor regulation of the actin cytoskeleton. We extend these findings by establishing a potentiating effect of SH2-Bbeta on GH-dependent cell motility and defining regions of SH2-Bbeta required for this potentiation. Time-lapse video microscopy, phagokinetic, and/or wounding assays demonstrate reduced movement of cells overexpressing SH2-Bbeta lacking an intact SH2 domain because of a point mutation or a C-terminal truncation. An N-terminal proline-rich domain (amino acids 85-106) of SH2-Bbeta is required for inhibition of cellular motility by SH2 domain-deficient mutants. Co-immunoprecipitation experiments indicate that Rac binds to this domain. GH is shown to activate endogenous Rac, and dominant negative mutants of SH2-Bbeta are shown to inhibit membrane ruffling induced by constitutively active Rac. These findings suggest that SH2-Bbeta is an adapter protein that facilitates actin rearrangement and cellular motility by recruiting Rac and potentially Rac-regulating, Rac effector, or other actin-regulating proteins to activated cytokine (e.g. GH) and growth factor receptors.  相似文献   

17.
Adhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides. Positively charged surface patches of the domain preferentially bind to polyvalent acidic lipids such as PIP2 or PIP3 over the monovalent PS phospholipid and this interaction is dependent on the N-terminal helix of the hSH3 domain fold. Basic amino acid side-chains from the SH3 scaffold also contribute to lipid binding. In the context of T cell signalling, our findings suggest that ADAP, upon recruitment to the cell-cell junction as part of a multiprotein complex, directly interacts with phosphoinositide-enriched regions of the plasma membrane. Furthermore, the ADAP lipid interaction defines the helically extended SH3 scaffold as a novel member of membrane interaction domains.  相似文献   

18.
A partially agonistic monoclonal antibody, 4D5, known to bind to the extracellular domain of p185HER2 and shown to inhibit long term growth of p185HER2-overexpressing breast cancer cells, was used to study signal transduction and phosphotyrosyl protein substrates associated with this receptor. Normal breast epithelial cells and breast carcinoma cells expressing low levels of p185HER2 were not affected by 4D5. HER2/neu-overexpressing breast cancer cells (BT-474 and SK-Br-3) exposed to 4D5 exhibited rapid phosphorylation of both p185HER2 and an associated 56-kDa phosphotyrosyl protein (ptyr56). Paralleling the 4D5- stimulated phosphorylation of p185HER2 and ptyr56 was a 5-10-fold induction of c-fos mRNA and phosphatidylinositol 4-kinase activity and a 2-fold induction of inositol 1,4,5-trisphosphate 3'-kinase activity. The increased phosphatidylinositol 4-kinase activity immunoprecipitated with p185HER2 and also co-eluted with ptyr56 from an antiphosphotyrosine immunoaffinity column. These results indicate that short term (less than 6 h) 4D5 activation of p185HER2 in overexpressing breast cancer cells produces agonistic-like signaling typical of homologous tyrosine kinase growth factor receptors such as epidermal growth factor receptor. The data also suggest that ptyr56 represents a novel phosphorylated substrate associated with 4D5-stimulated p185HER2.  相似文献   

19.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

20.
hMena and the epithelial specific isoform hMena(11a) are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a) expression and phosphorylates hMena(11a), suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a) in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a) overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a) expression and hMena(11a) phosphorylation. On the other hand, hMena/hMena(11a) knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a) knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a) as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号