首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%–30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T1, T2, and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.  相似文献   

2.
A new SH2-containing sequence, SHC, was isolated by screening cDNA libraries with SH2 representative DNA probes. The SHC cDNA is predicted to encode overlapping proteins of 46.8 and 51.7 kd that contain a single C-terminal SH2 domain, and an adjacent glycine/proline-rich motif with regions of homology with the alpha 1 chain of collagen, but no identifiable catalytic domain. Anti-SHC antibodies recognized three proteins of 46, 52, and 66 kd in a wide range of mammalian cell lines. These SHC proteins complexed with and were phosphorylated by activated epidermal growth factor receptor. The physical association of SHC proteins with activated receptors was recreated in vitro by using a bacterially expressed SHC SH2 domain. NIH 3T3 mouse fibroblasts that constitutively overexpressed SHC acquired a transformed phenotype in culture and formed tumors in nude mice. These results suggest that the SHC gene products couple activated growth factor receptors to a signaling pathway that regulates the proliferation of mammalian cells.  相似文献   

3.
Grb14 is an adapter protein that is known to be overexpressed in estrogen receptor positive breast cancers, and in a number of prostate cancer cell lines. Grb14 has been demonstrated to bind to a number of activated receptor tyrosine kinases (RTKs) and to modulate signals transduced through these receptors. The RTKs to which Grb14 binds include the insulin receptor (IR), the fibroblast growth factor receptor (FGFR), the platelet-derived growth factor receptor (PDGFR), and the tunica endothelial kinase (Tek/Tie2) receptor. Grb14 has been shown to bind to these activated RTKs through its Src homology 2 (SH2) domain, with the exception of the insulin receptor, where the primary binding interaction is via a small domain adjacent to the SH2 domain (the BPS or PIR domain). Grb14 is a member of the Grb7 family of proteins, which also includes Grb7 and Grb10. We have solved the solution structure of the human Grb14-SH2 domain and compared it with the recently determined Grb7-SH2 and Grb10-SH2 domain structures.  相似文献   

4.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20-30% of breast cancers. In general, growth factor receptor bound (Grb) proteins bind to activated membrane-bound receptor tyrosine kinases (RTKs; e.g., the epidermal growth factor receptor, EGFR) through their Src homology 2 (SH2) domains. In particular, Grb7 binds to erbB2 (a.k.a. EGFR2) and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In previous studies, we reported the solution structure and the backbone relaxation behavior of the Grb7-SH2/erbB2 peptide complex. In this study, isothermal titration calorimetry studies have been completed by measuring the thermodynamic binding parameters of several phosphorylated and non-phosphorylated peptides representative of natural Grb7 receptor ligands as well as ligands developed through combinatorial peptide screening methods. The entirety of these calorimetric studies is interpreted in an effort to describe the specific ligand binding characteristics of the Grb7 protein.  相似文献   

5.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

6.
A novel method has been developed to allow cloning of protein targets for receptors with tyrosine kinase activity. By utilizing the carboxy-terminal tail of EGF receptor (EGFR) as a probe to screen lambda gt11 expression libraries, several EGFR-binding proteins have been cloned; two have been analyzed and contain unique SH2 and SH3 domains. One gene (GRB-1) has been fully sequenced, is expressed in various tissues and cell lines, and has a molecular mass of 85 kd. Interestingly, GRB-1 encodes the human counterpart of the PI3 kinase-associated protein p85. Advantages of this technique include the ease of cloning tyrosine kinase receptor targets present at low levels and the ability to identify proteins that are related in their capacity to bind activated receptors but contain no significant DNA sequence homology. This method, termed CORT (for cloning of receptor targets), offers a general approach for the identification and cloning of various receptor targets.  相似文献   

7.
Src homology 2 (SH2) domains provide specificity to intracellular signaling by binding to specific phosphotyrosine (phospho-Tyr)-containing sequences. We recently developed a technique using a degenerate phosphopeptide library to predict the specificity of individual SH2 domains (src family members, Abl, Nck, Sem5, phospholipase C-gamma, p85 subunit of phosphatidylinositol-3-kinase, and SHPTP2 (Z. Songyang, S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley, Cell 72:767-778, 1993). We report here the optimal recognition motifs for SH2 domains from GRB-2, Drk, Csk, Vav, fps/fes, SHC, Syk (carboxy-terminal SH2), 3BP2, and HCP (amino-terminal SH2 domain, also called PTP1C and SHPTP1). As predicted, SH2 domains from proteins that fall into group I on the basis of a Phe or Tyr at the beta D5 position (GRB-2, 3BP2, Csk, fps/fes, Syk C-terminal SH2) select phosphopeptides with the general motif phospho-Tyr-hydrophilic (residue)-hydrophilic (residue)-hydrophobic (residue). The SH2 domains of SHC and HCP (group III proteins with Ile, Leu, of Cys at the beta D5 position) selected the general motif phospho-Tyr-hydrophobic-Xxx-hydrophobic, also as predicted. Vav, which has a Thr at the beta D5 position, selected phospho-Tyr-Met-Glu-Pro as the optimal motif. Each SH2 domain selected a unique optimal motif distinct from motifs previously determined for other SH2 domains. These motifs are used to predict potential sites in signaling proteins for interaction with specific SH2 domain-containing proteins. The Syk SH2 domain is predicted to bind to Tyr-hydrophilic-hydrophilic-Leu/Ile motifs like those repeated at 10-residue intervals in T- and B-cell receptor-associated proteins. SHC is predicted to bind to a subgroup og these same motifs. A structural basis for the association of Csk with Src family members is also suggested from these studies.  相似文献   

8.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with alpha5beta1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

9.
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.  相似文献   

10.
Insulin receptor substrate (IRS) proteins are phosphorylated by multiple tyrosine kinases, including the insulin receptor. Phosphorylated IRS proteins bind to SH2 domain-containing proteins, thereby triggering downstream signaling pathways. The Drosophila insulin receptor (dIR) C-terminal extension contains potential binding sites for signaling molecules, suggesting that dIR might not require an IRS protein to accomplish its signaling functions. However, we obtained a cDNA encoding Drosophila IRS (dIRS), and we demonstrated expression of dIRS in a Drosophila cell line. Like mammalian IRS proteins, the N-terminal portion of dIRS contains a pleckstrin homology domain and a phosphotyrosine binding domain that binds to phosphotyrosine residues in both human and Drosophila insulin receptors. When coexpressed with dIRS in COS-7 cells, a chimeric receptor (the extracellular domain of human IR fused to the cytoplasmic domain of dIR) mediated insulin-stimulated tyrosine phosphorylation of dIRS. Mutating the juxtamembrane NPXY motif markedly reduced the ability of the receptor to phosphorylate dIRS. In contrast, the NPXY motifs in the C-terminal extension of dIR were required for stable association with dIRS. Coimmunoprecipitation experiments demonstrated insulin-dependent binding of dIRS to phosphatidylinositol 3-kinase and SHP2. However, we did not detect interactions with Grb2, SHC, or phospholipase C-gamma. Taken together with published genetic studies, these biochemical data support the hypothesis that dIRS functions directly downstream from the insulin receptor in Drosophila.  相似文献   

11.
12.
Crkl is an adapter protein and phosphotyrosine-containing substrate implicated in transformation by the bcr-abl oncogene and in signaling by cytokines. When phosphorylated, Crkl binds through its Src homology 2 (SH2) domain to other tyrosine phosphoproteins such as paxillin and Cbl. Overexpression of Crkl in fibroblasts induces transformation. Here we examine the role of Crkl in hematopoietic cells and find that overexpression of Crkl confers a signal leading to increased adhesion to fibronectin. In both fibroblasts and hematopoietic cells, individual mutations or deletions of each SH2 and SH3 domain abrogated transformation and adhesion, respectively, indicating that interactions with other proteins such as Cbl and paxillin (SH2 domain) and Abl, Sos, and C3G (N-terminal SH3 domain) are essential for biological activity. In vivo and in vitro tryptic phosphopeptide mapping studies show that Crkl is phosphorylated on multiple tyrosine residues when overexpressed or when activated by Bcr-Abl. Mutation at tyrosine 207, a residue conserved in c-Crk, abrogates all in vivo tyrosine phosphorylation of Crkl. Despite this loss of phosphotyrosine, mutation at this site enhanced Crkl function as measured by complex formation with SH2 binding proteins, signal transduction to Jun Kinase, and fibroblast transformation. These observations implicate Crkl in cellular adhesion and demonstrate that Y207 functions as a negative regulatory site.  相似文献   

13.
Prior studies have established a role in insulin action for the tyrosine phosphorylation of substrates and their subsequent complexing with SH2 containing proteins. More recently, SH2 proteins have been identified which can tightly bind to the tyrosine phosphorylated insulin receptor. The major protein identified so far (called Grb-IR or Grb10) of this type appears to be present in at least 3 isoforms, varying in the presence of a pleckstrin homology domain and in the sequence of its amino terminus. The binding of this protein to the insulin receptor appears to inhibit signalling by the receptor. The present review will discuss the current knowledge of the structure and function of this protein.  相似文献   

14.
15.
On T cell receptor (TCR) stimulation, src homology 2 domain‐containing transforming protein C1 (SHC1) had been found to bind the tyrosine‐phosphorylated CD247 chain of the receptor via its src homology 2 (SH2) domain, delivering signals that control T cell development and activation. However, how the phosphorylation of CD247 led to the instant binding has not been characterized clearly. To study the binding process in detail, we simulated and compared the interaction processes of the SH2 domain with CD247 and phosphorylated CD247, respectively. Unexpectedly, the simulation revealed that SHC1 can also bind the nonphosphorylated CD247 peptide, which was further validated to be a weak binding by affinity pull‐down experiment. The molecular dynamics (MD) simulation also revealed that the CD247 peptide formed a folding conformation with its Leu209 inserted into the hydrophobic binding pocket in SHC1. And on phosphorylation, it was the electrostatic attraction between the CD247 Tyr(P)206 and the SHC1 Tyr(P)‐binding pocket that destroyed the folding conformation of the nonphosphorylated CD247 and, aided by the electrostatic attraction between SHC1 and the Asp203 of CD247, led to the extended conformation of the phosphorylated CD247 binding to SHC1 strongly. The results suggest that nonphosphorylated CD247 can recruit SHC1 in advance to prepare for the instant needs for SHC1 on TCR stimulation. In view of the ubiquity of phosphorylation in protein interaction regulation, we think this study also exemplified the usefulness of MD in more interactome research involving phosphorylation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
IRS-1 (insulin receptor substrate 1) is a principal insulin receptor substrate that undergoes tyrosine phosphorylation during insulin stimulation. It contains over 20 potential tyrosine phosphorylation sites, and we suspect that multiple insulin signals are enabled when the activated insulin receptor kinase phosphorylates several of them. Tyrosine-phosphorylated IRS-1 binds specifically to various cellular proteins containing Src homology 2 (SH2) domains (SH2 proteins). We identified some of the tyrosine residues of IRS-1 that undergo insulin-stimulated phosphorylation by the purified insulin receptor and in intact cells during insulin stimulation. Automated sequencing and manual radiosequencing revealed the phosphorylation of tyrosine residues 460, 608, 628, 895, 939, 987, 1172, and 1222; additional sites remain to be identified. Immobilized SH2 domains from the 85-kDa regulatory subunit (p85 alpha) of the phosphatidylinositol 3'-kinase bind preferentially to tryptic phosphopeptides containing Tyr(P)-608 and Tyr(P)-939. By contrast, the SH2 domain in GRB2 and the amino-terminal SH2 domain in SHPTP2 (Syp) specifically bind to Tyr(P)-895 and Tyr(P)-1172, respectively. These results confirm the p85 alpha recognizes YMXM motifs and suggest that GRB2 prefers a phosphorylated YVNI motif, whereas SHPTP2 (Syp) binds to a phosphorylated YIDL motif. These results extend the notion that IRS-1 is a multisite docking protein that engages various downstream regulatory elements during insulin signal transmission.  相似文献   

17.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

18.
Adaptor proteins Grb7 and Grb2 have been implicated as being 2 potential therapeutic targets in several human cancers, especially those that overexpress ErbB2. These 2 proteins contain both a SH2 domain (Src homology 2) that binds to phosphorylated tyrosine residues contained within ErbB2 and other specific protein targets. Two assays based on enzyme-linked immunosorbent assay and fluorescence polarization methods have been developed and validated to find and rank inhibitors for both proteins binding to the pY(1139). Fluorescence polarization assays allowed the authors to determine quickly and reproducibly affinities of peptides from low nanomolar to high micromolar range and to compare them directly for Grb7 and Grb2. As a result, the assays have identified a known peptidomimetic Grb2 SH2 inhibitor (mAZ-pTyr-(alphaMe)pTyr-Asn-NH(2)) that exhibits the most potent affinity for the Grb7 SH2 domain described to date.  相似文献   

19.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

20.
SH2-Bbeta binds to the activated form of JAK2 and various receptor tyrosine kinases. It is a potent stimulator of JAK2, is required for growth hormone (GH)-induced membrane ruffling, and increases mitogenesis stimulated by platelet-derived growth factor (PDGF) and insulin-like growth factor I. Its domain structure suggests that SH2-Bbeta may act as an adapter protein to recruit downstream signaling proteins to kinase.SH2-Bbeta complexes. SH2-Bbeta is tyrosyl-phosphorylated in response to GH and interferon-gamma, stimulators of JAK2, as well as in response to PDGF and nerve growth factor. To begin to elucidate the role of tyrosyl phosphorylation in the function of SH2-Bbeta, we used phosphopeptide mapping, mutagenesis, and a phosphotyrosine-specific antibody to identify Tyr-439 and Tyr-494 in SH2-Bbeta as targets of JAK2 both in vitro and in intact cells. SH2-Bbeta lacking Tyr-439 and Tyr-494 inhibits GH-induced membrane ruffling but still activates JAK2. We provide evidence that JAK1, like JAK2, phosphorylates Tyr-439 and Tyr-494 in SH2-Bbeta and that PDGF receptor phosphorylates SH2-Bbeta on Tyr-439. Therefore, phosphorylated Tyr-439 and/or Tyr-494 in SH2-Bbeta may provide a binding site for one or more proteins linking cytokine receptor.JAK2 complexes and/or receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号