首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of moderate insulin deficiency of 2 weeks in duration on hypothalamic catecholamine metabolism in food-deprived and meal-fed rats was evaluated. Hypothalamic tyrosine content in food-deprived (from 0700 to 1600 h), diabetic rats was normal. Also normal were the rates of 3,4-dihydroxyphenylalanine accumulation following aromatic amino acid decarboxylase inhibition, norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) clearance after tyrosine hydroxylase inhibition, and intraneuronal amine accumulation following monoamine oxidase inhibition. Differences in hypothalamic amine metabolism were apparent, however, when diabetic and normal rats were fed 2-g meals. The 3-methoxy-4-hydroxyphenylethyleneglycol sulfate accumulation rate was depressed in diabetic rats by the carbohydrate meal but was stimulated by the tyrosine-supplemented protein meal. In contrast, the tyrosine-supplemented diet had no effect on 3,4-dihydroxyphenylacetic acid accumulation in diabetic animals, whereas the production rate in normal rats was increased. We conclude that normal responses occurring in hypothalamic catecholamine metabolism after the consumption of a meal are modified by the presence of diabetes.  相似文献   

2.
3.
The adrenomedullary chromaffin cells’ hormonal pathway has been related to the pathophysiology of diabetes mellitus. In mice, the deletion of insulin receptor substrate type 2 (Irs2) causes peripheral insulin resistance and reduction in β-cell mass, leading to overt diabetes, with gender differences on adrenergic signaling. To further unravel the relevance of Irs2 on glycemic control, we analyzed in adult Irs2 deficient (Irs2?/?) mice, of both sexes but still normoglycemic, dopamine effects on insulin secretion and glycerol release, as well as their adrenal medulla by an immunohistochemical and morphologic approach. In isolated islets, 10 μM dopamine significantly inhibited insulin release in wild-type (WT) and female Irs2?/? mice; however, male Irs2?/? islets were insensitive to that catecholamine. Similarly, on isolated adipocytes, gender differences were observed between WT and Irs2?/? mice in basal and evoked glycerol release with crescent concentrations of dopamine. By immunohistochemistry, reactivity to tyrosine hydroxylase (TH) in female mice was significantly higher in the adrenal medulla of Irs2?/? compared to WT; although no differences for TH-immunopositivity were observed between the male groups of mice. However, compared to their corresponding WT animals, adrenomedullary chromaffin cells of Irs2?/? mice showed a significant decrease in the cellular and nuclear areas, and even in their percentage of apoptosis. Therefore, our observations suggest that, together with gender differences on dopamine responses in Irs2?/? mice, disturbances in adrenomedullary chromaffin cells could be related to deficiency of Irs2. Accordingly, Irs2 could be necessary for adequate glucose homeostasis and maintenance of the population of the adrenomedullary chromaffin cells.  相似文献   

4.
Tyrosine hydroxylase activity correlated significantly with norepinephrine concentration and turnover, when results from regions containing predominantly noradrenergic terminals were compared, and with dopamine concentration and turnover when results from regions containing predominantly dopaminergic terminals were compared. Regions containing dopamine or norepinephrine cell bodies were characterized by higher tyrosine hydroxylase activities as compared to regions containing mostly nerve terminals. Higher levels of tyrosine hydroxylase activity and transmitter turnover were observed in regions containing dopaminergic terminals than in regions containing norepinephrine terminals. These findings are consistent with the view that tyrosine hydroxylase activity is linked to rates of catecholamine utilization by neurons in the CNS.  相似文献   

5.
Changes in polyploidization, chromatin supraorganization, and chromatin accessibility were investigated in hepatocytes collected from adult, nonobese diabetic (NOD) mice with increasing hyperglycemia and compared with adult normoglycemic controls and 56-week-old normoglycemic BALB/c mice. Our goal was to determine the changes in ploidy degrees and chromatin characteristics in mouse hepatocytes that are associated with insulin-dependent diabetes and to detect similarities in these aspects with those verified with aging, with greater accuracy than previous studies. Image analysis of Feulgen-stained nuclei revealed changes in ploidy degrees and chromatin supraorganization. Chromatin accessibility was assessed with micrococcal nuclease (MNase) digestion. Increased polyploidy was associated with increasing levels of glycemia, and this trend toward polyploidy was found even under normoglycemic conditions in NOD mice. Although high degrees of ploidy were also detected in aged BALB/c mice, the magnitude of polyploidy was not the same magnitude as that in the diabetic mice. While there was increased homogeneity of chromatin packaging with increasing polyploidy under conditions of severe hyperglycemia (and even under conditions of normoglycemia) in NOD mice, an inverse relationship was observed in aged BALB/c mice. Chromatin accessibility to MNase increased under severe hyperglycemia and advanced age, but it was much higher in the diabetic mice. In conclusion, although similarities in polyploidy were observed between the hepatocytes from increasingly hyperglycemic adult mice and those from normoglycemic aged mice, the relationship between chromatin remodeling and increases in ploidy degrees was not the same between the hepatocytes of these two groups. These findings demonstrate that strict similarities between diabetes and aging are not always true at the cellular level. This discordance is likely due to differences in the metabolic state of mouse hepatocytes during aging and diabetic conditions consequent to specificities in their gene regulatory programs. ? 2012 International Society for Advancement of Cytometry.  相似文献   

6.
This study examined the relationship between islet neurohormonal characteristics and the defective glucose-stimulated insulin secretion in genetic type 2 diabetic Chinese hamsters. Two different sublines were studied: diabetes-prone CHIG hamsters and control CHIA hamsters. The CHIG hamsters were divided into three subgroups, depending on severity of hyperglycemia. Compared to normoglycemic CHIG hamsters and control CHIA hamsters, severely hyperglycemic CHIG hamsters (glucose > 15 mmol/l) showed marked glucose intolerance during i.p. glucose tolerance test and 75% impairment of glucose-stimulated insulin secretion from isolated islets. Mildly hyperglycemic CHIG animals (glucose 7.2-15 mmol/l) showed only moderate glucose intolerance and a 60% impairment of glucose-stimulated insulin secretion from the islets. Immunostaining for neuropeptide Y and tyrosine hydroxylase (markers for adrenergic nerves) and for vasoactive intestinal peptide (marker for cholinergic nerves) revealed significant reduction in immunostaining of islets in the severely but not in the mildly hyperglycemic animals, compared to control CHIA hamsters. The study therefore provides evidence that in this model of type 2 diabetes in Chinese hamsters, severe hyperglycemia is accompanied not only by marked glucose intolerance and islet dysfunction but also by reduced islet innervation. This suggests that islet neuronal alterations may contribute to islet dysfunction in severe but not in mild diabetes.  相似文献   

7.
Catecholamine release and uptake in the mouse prefrontal cortex   总被引:7,自引:0,他引:7  
Monitoring the release and uptake of catecholamines from terminals in weakly innervated brain regions is an important step in understanding their importance in normal brain function. To that end, we have labeled brain slices from transgenic mice that synthesize placental alkaline phosphatase (PLAP) on neurons containing tyrosine hydroxylase with antibody-fluorochrome conjugate, PLAP-Cy5. Excitation of the fluorochrome enables catecholamine neurons to be visualized in living tissue. Immunohistochemical fluorescence with antibodies to tyrosine hydroxylase and dopamine beta-hydroxylase revealed that the PLAP labeling was specific to catecholamine neurons. In the prefrontal cortex (PFC), immunohistochemical fluorescence of the PLAP along with staining for dopamine transporter (DAT) and norepinephrine transporter (NET) revealed that all three exhibit remarkable spatial overlap. Fluorescence from the PLAP antibody was used to position carbon-fiber microelectrodes adjacent to catecholamine neurons in the PFC. Following incubation with L-DOPA, catecholamine release and subsequent uptake was measured and the effect of uptake inhibitors examined. Release and uptake in NET and DAT knockout mice were also monitored. Uptake rates in the cingulate and prelimbic cortex are so slow that catecholamines can exist in the extracellular fluid for sufficient time to travel approximately 100 microm. The results support heterologous uptake of catecholamines and volume transmission in the PFC of mice.  相似文献   

8.
Rats were made diabetic by intravenous administration of streptozotocin, 100 mg/kg. Six groups of animals were studied: normal; animals given a supplement of 100% corn oil margarine; insulin-treated normoglycemic diabetic; hyperglycemic nonacidotic diabetic; ketoacidotic diabetic; and NH4Cl acidotic. The kidneys were removed from anesthetized animals. The renal cortex was separated from the medulla, freeze-clamped, and homogenized. Total lipids were extracted and measured gravimetrically. Lipid fractions were determined by thin-layer chromatography. Fatty acids of triacylglycerols and of phospholipids were analyzed by gas chromatography. Plasma triacylglycerols were elevated in hyperglycemic nonacidotic rats and more so in ketoacidotic animals. Total kidney lipids were 18% higher in nonacidotic hyperglycemic rats and 56% higher in ketoacidotic diabetic rats. This was due to accumulation of triacylglycerols while the phospholipid and cholesterol fractions did not change. Examination of long-chain fatty acids of kidney cortex triacylglycerols revealed that palmitate rose in a significant fashion while linoleate fell. This pattern was similar in all three groups of diabetic animals. The present data characterize the lipid content of the experimental rat diabetic kidney. They establish that the accumulation of lipids in the renal cortex during diabetes is related to triacyclgycerols and their palmitate content. Our study also provides a clear profile of plasma triacylglycerols during diabetes mellitus in the rat.  相似文献   

9.
Hanses F  Park S  Rich J  Lee JC 《PloS one》2011,6(8):e23633
Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients.  相似文献   

10.
Angiogenesis impairment in hyperglycemic patients represents a leading cause of severe vascular complications of both type-1 and -2 diabetes mellitus (DM). Angiogenesis dysfunction in DM is related to glycemic control; however, molecular mechanisms involved are still unclear. Fibroblast growth factor-2 (FGF-2) is a potent angiogenic factor and, according to previous evidence, may represent a key target of molecular modifications triggered by high-sugar exposure. Therefore, the purpose of this study was to investigate whether short incubation with hyperglycemic levels of glucose affected FGF-2 and whether glucose-modified FGF-2 was detectable in vivo. Biochemical analyses carried out with SDS-PAGE, fluorescence emission, mass-spectrometry, immunoblot, and competitive ELISA experiments demonstrated that human FGF-2 undergoes a rapid and specific glycation upon 12.5-50 mm glucose exposure. In addition, FGF-2 exposed for 30 min to 12.5 mm glucose lost mitogenic and chemotactic activity in a time- and dose-dependent manner. Under similar conditions, binding affinity to FGF receptor 1 was dramatically reduced by 20-fold, as well as FGF receptor 1 and ERK-1/2 phosphorylation, and FGF-2 lost about 45% of angiogenic activity in two different in vivo angiogenic (Matrigel and chorioallantoic-membrane) assays. Such glucose-induced modification was specific, because other angiogenic growth factors, namely platelet-derived growth factor BB and placental-derived growth factor were not significantly or markedly less modified. Finally, for the first time, glycated-FGF-2 was detected in vivo, in tissues from hyperglycemic nonobese diabetic mice, in significantly higher amounts than in normoglycemic mice. In conclusion, hyperglycemic levels of glucose may strongly affect FGF-2 structure and impair its angiogenic features, and endogenous glycated-FGF-2 is present in diabetic mice, indicating a novel pathogenetic mechanism underlying angiogenesis defects in DM.  相似文献   

11.
Ascorbic acid enhancement of norepinephrine formation from tyrosine in cultured bovine chromaffin cells was characterized in detail as a model system for determining ascorbate requirements. In resting cells, ascorbic acid increased dopamine beta-monooxygenase activity without changing tyrosine 3-monooxygenase activity. [14C]Norepinephrine specific activity was increased by ascorbic acid, while [14C]dopamine specific activity was unchanged. Dopamine content, dopamine biosynthesis, tyrosine content, and tyrosine uptake were also unaffected by ascorbic acid. Furthermore, increased norepinephrine formation could not be attributed to changes in norepinephrine catabolism. Enhancement of dopamine beta-monooxygenase activity was specific for ascorbic acid, since other reducing agents with higher redox potentials were unable to increase norepinephrine formation. The specific effect of ascorbic acid on enhancement of norepinephrine formation was also observed in chromaffin cells stimulated to secrete with carbachol, acetylcholine, veratridine, and potassium chloride. In stimulated cells with and without ascorbate, there were no differences in dopamine content, tyrosine uptake, dopamine specific activity, and norepinephrine catabolism. These data indicate that, under a wide variety of conditions, only one catecholamine biosynthetic enzyme activity, dopamine beta-monooxygenase, is specifically stimulated by ascorbic acid alone in cultured chromaffin cells. This model system exemplifies a new approach for determining ascorbic acid requirements in cells and animals.  相似文献   

12.
Abstract: Investigations of gene therapy for Parkinson's disease have focused primarily on strategies that replace tyrosine hydroxylase. In the present study, the role of aromatic l -amino acid decarboxylase in gene therapy with tyrosine hydroxylase was examined by adding the gene for aromatic l -amino acid decarboxylase to our paradigm using primary fibroblasts transduced with both tyrosine hydroxylase and GTP cyclohydrolase I. We compared catecholamine synthesis in vitro in cultures of cells with tyrosine hydroxylase and aromatic l -amino acid decarboxylase together versus cocultures of cells containing these enzymes separately. l -DOPA and dopamine levels were higher in the cocultures that separated the enzymes. To determine the role of aromatic l -amino acid decarboxylase in vivo, cells containing tyrosine hydroxylase and GTP cyclohydrolase I were grafted alone or in combination with cells containing aromatic l -amino acid decarboxylase into the 6-hydroxydopamine-denervated rat striatum. Grafts containing aromatic l -amino acid decarboxylase produced less l -DOPA and dopamine as monitored by microdialysis. These findings indicate that not only is there sufficient aromatic l -amino acid decarboxylase near striatal grafts producing l -DOPA, but also the close proximity of the enzyme to tyrosine hydroxylase is detrimental for optimal dopamine production. This is most likely due to feedback inhibition of tyrosine hydroxylase by dopamine.  相似文献   

13.
Higher activity of the peripheral sympathetic nervous system, accompanied by higher tyrosine hydroxylase activity is frequently and consistently reported in human essential hypertension as well as in animal models of hypertension. However, results obtained in the adrenals, particularly in young animals before the development of hypertension, are scarce and controversial. In the present study tyrosine hydroxylase activity and catecholamine content in the adrenals of spontaneously hypertensive rats and of age-matched control Wistar Kyoto rats were evaluated before, during and after the development of hypertension (5, 12 and 22-week-old animals). Results show that both tyrosine hydroxylase activity and total amine content in the adrenals of spontaneously hypertensive rats were significantly reduced (35% reduction) at all studied ages. Determination of the kinetic parameters for tyrosine hydroxylase in the adrenals of 5 week-old spontaneously hypertensive rats revealed a 38% reduction in V(max) values (13.4 versus 21.3 nmol L-DOPA/mg prot/h in age-matched controls) accompanied by lower levels of expression of both tyrosine hydroxylase total protein and phosphoSer40 observed by Western-Blot. In contrast, norepinephrine content in both plasma and tail artery were significantly higher in the spontaneously hypertensive strain. In conclusion, contrary to the higher peripheral sympathetic activity, tyrosine hydroxylase activity and catecholamine content in the adrenals of spontaneously hypertensive rats are markedly reduced before, during and after the development of hypertension. End product, long-term feedback inhibition by the high norepinephrine plasma levels could be responsible for this reduction, establishing yet another regulatory mechanism of tyrosine hydroxylase operating in adrenal cromaffin cells.  相似文献   

14.
To elucidate the source and physiological significance of plasma 3,4-dihydroxyphenylalanine, the immediate product of the rate-limiting step in catecholamine biosynthesis, plasma 3,4-dihydroxyphenylalanine was quantified in conscious rats after administration of reserpine, desipramine, clorgyline, or forskolin, treatments that affect tyrosine hydroxylase activity. Plasma 3,4-dihydroxyphenylalanine was also examined during infusions of norepinephrine with or without clorgyline, reserpine, or desipramine pretreatment. After reserpine, the plasma 3,4-dihydroxyphenylalanine level decreased by 22% and then increased by 40%, a result consistent with modulation of tyrosine hydroxylase activity first by an increased axoplasmic norepinephrine content and then by depletion of norepinephrine stores. After desipramine, the plasma 3,4-dihydroxyphenylalanine level decreased by 20%, reflecting the depressant effect of neuronal uptake blockade on norepinephrine turnover. Forskolin increased the plasma 3,4-dihydroxyphenylalanine level by 30%, consistent with activation of tyrosine hydroxylase by cyclic AMP-dependent phosphorylation. Acute administration of clorgyline was without effect on the plasma 3,4-dihydroxyphenylalanine level. Norepinephrine infusions decreased the plasma 3,4-dihydroxyphenylalanine concentration, as expected from end-product inhibition of tyrosine hydroxylase. Pretreatment with desipramine prevented the norepinephrine-induced decrease in plasma dihydroxyphenylalanine content, indicating that inhibition of tyrosine hydroxylase required neuronal uptake of norepinephrine. Both reserpine and clorgyline augmented the norepinephrine-induced decrease in plasma 3,4-dihydroxyphenylalanine level, suggesting that retention of norepinephrine in the axoplasm--due to inhibition of norepinephrine sequestration into storage vesicles or catabolism--caused further inhibition of tyrosine hydroxylase. Changes in plasma 3,4-dihydroxyphenylalanine concentration during norepinephrine infusions were negatively correlated with those in plasma 3,4-dihydroxyphenylglycol level, a finding consistent with modulation of tyrosine hydroxylase activity by axoplasmic norepinephrine. In reserpinized animals, clorgyline and norepinephrine infusion together decreased the plasma 3,4-dihydroxyphenylalanine content by 50%, a result demonstrating that hydroxylation of tyrosine was depressed by at least half. The results indicate that quantification of plasma 3,4-dihydroxyphenylalanine can provide a simple and direct approach for examination of the rate-limiting step in catecholamine biosynthesis.  相似文献   

15.
BACKGROUND: Peroxynitrite is a cytotoxic oxidant formed from nitric oxide (NO) and superoxide. Tyrosine nitration, a footprint of peroxynitrite, has been demonstrated in the pancreatic islets as well as in the cardiovascular system of diabetic subjects. Delineation of the pathogenetic role of peroxynitrite in disease conditions requires the use of potent, in vivo active peroxynitrite decomposition catalysts. The aim of the current work was to produce a potent peroxynitrite decomposition catalyst and to test its effects in rodent models of diabetes and its complications. METHODS: FP15 was synthesized and analyzed using standard chemical methods. Diabetes was triggered by the administration of streptozotocin. Tyrosine nitration was measured immunohistochemically. Cardiovascular and vascular measurements were conducted according to standard physiologic methods. RESULTS: FP15, a potent porphyrinic peroxynitrite decomposition catalyst, potently inhibited tyrosine nitration and peroxynitrite-induced cytotoxicity in vitro and in vivo. FP15 treatment (3-10 mg/kg/d) dose dependently and reduced the incidence and severity of diabetes mellitus in rats subjected to multiple low doses of streptozotocin, as well as in nonobese mice developing spontaneous autoimmune diabetes. Furthermore, treatment with FP15 protected against the development of vascular dysfunction (loss of endothelium-dependent relaxations) and the cardiac dysfunction (loss of myocardial contractility) in diabetic mice. FP15 treatment reduced tyrosine nitration in the diabetic pancreatic islets. CONCLUSIONS: The current results demonstrate the importance of endogenous peroxynitrite generation in the pathogenesis of autoimmune diabetes and diabetic cardiovascular complications. Peroxynitrite decomposition catalysts may be of therapeutic utility in diabetes and other pathophysiologic conditions.  相似文献   

16.
Tyrosine hydroxylase and tryptophan hydroxylase are widely held to be rate-limiting for the synthesis of the catecholamines and serotonin, respectively. Both enzymes are oxygen-requiring and kinetic properties suggest that oxygen availability may limit synthesis of these neurotransmitters in the brain. Using pheochromocytoma cells as a cell culture model for catecholamine synthesis, and neuroblastoma cells as a model for serotonin synthesis, enzyme activity was measured under control and hypoxic conditions. Both tyrosine hydroxylase and tryptophan hydroxylase activity increased substantially with chronic exposure but not with acute exposure. In the case of tyrosine hydroxylase, increased enzyme content with hypoxia accounts for increased activity. This suggests a mechanism for the maintenance of neurotransmitter synthesis with chronic hypoxia. Measurement of intracellular metabolites revealed no change in dopamine or norepinephrine in hypoxic pheochromocytoma cells, consistent with a simple adaptive mechanism. However, in neuroblastoma cells, hypoxia was associated with an increase in serotonin concentration. The reasons for this are still unclear.  相似文献   

17.
Hyperglycemia, like aging, induces chromatin remodeling in mouse hepatocytes in comparison to normoglycemia and younger age, respectively. Changes in glucose metabolism also affect the action and expression of sirtuins, promoting changes in chromatin conformation and dynamics. Here we investigate the abundance and activity of the nuclear sirtuins Sirt1, Sirt6, and Sirt7 in mouse hepatocytes in association with specific histone acetylation, DNA damage, and the activation of nucleolar organizing regions (NORs) in hyperglycemic nonobese diabetic (NOD) and old normoglycemic BALB/c mouse strains. Higher levels of Sirt1 and PGC-1α and increased expression of gluconeogenesis pathway genes are found in the hyperglycemic NOD mice. Increased Sirt6 abundance is found in the hyperglycemic NOD mice, which might increase DNA damage repair. With aging, lower Sirt1 abundance and activity, increased acetylated histone modifications and Sirt7 levels, and NOR methylation are found. Thus, whereas in normal aging cell metabolism is reduced, in the diabetic mice a compensatory mechanism may elevate Sirt1 and Sirt6 levels, increasing gluconeogenesis and DNA repair from the oxidative damage caused by hyperglycemia. Therefore understanding the regulation of epigenetic factors in diabetes and aging is crucial for the development of new therapeutic approaches that could prevent diseases and improve quality of life.  相似文献   

18.
The nonobese diabetic mouse is a model of spontaneous type I diabetes mellitus. It is possible to induce diabetes in young, irradiated nonobese diabetic mice by using adoptive transfer of splenocytes or splenic T cells obtained from diabetic donors. This study demonstrates that the induction of diabetes in the adoptive transfer system is dependent on both the L3T4+ and Lyt-2+ subsets of T cells. Neither of these T cell subsets alone mediates the development of severe insulitis or diabetes when adoptively transferred to young, irradiated recipients. In addition, we show that both the L3T4+ and Lyt-2+ subsets must be obtained from diabetic donors in order to transfer diabetes; neither subset can be replaced with cells obtained from young, nondiabetic donors.  相似文献   

19.
Abstract— The rates of brain tyrosine and tryptophan hydroxylation, estimated in vivo from the accumulation of DOPA and 5-hydroxytryptophan after the administration of a decarboxylase inhibitor, appear dependent on the availability of oxygen as a substrate. During two types of physical stress, electroshock and curare-immobilization, the rate of brain tyrosine hydroxylation was greater than in unstressed controls and was not significantly decreased when the stresssed animals were made hypoxic. The loss of oxygen dependence by brain tyrosine hydroxylation during stress was observed in several brain regions and was not associated with alterations in the concentrations of brain tyrosine. tryptophan, serotonin, dopamine or norepinephrine. The rate of brain tryptophan hydroxylation was not affected by stress and remained oxygen dependent. The increase in catecholamine synthesis during stress appears to be the result of increased catecholaminergic nerve impulse flow. These experiments are consistent with the hypothesis that during neuronal stimulation an allosteric change in tyrosine hydroxylase increases the affinity of the enzyme for oxygen allowing greater catecholamine synthesis despite limiting concentrations of this substrate.  相似文献   

20.
The autoimmune nonobese diabetic mouse, a model of human juvenile type I diabetes mellitus, exhibits features of both B and T cell autoreactivity against insulin-producing cells. Using the neonatal cell transfer model of the disease, which we have described previously, we have shown that B cell suppression of newborn recipients by anti-mu treatment did not affect the transfer of diabetes by means of T cells. B cell-depleted, purified T cells from diabetic adults were injected into newborns treated with either IR-52, a control rat myeloma protein, or LOMM.9, a rat anti-mouse mu-chain mAb. Both groups developed diabetes over a similar time scale. Although the pancreases in both groups showed massive infiltration by T lymphocytes, B lymphocytes, presumably recruited in the host, were present in the IR-52-treated group, whereas they were absent in the LOMM.9-treated group. Anti-mu-treated diabetic animals showed substantial B cell suppression in vivo and in vitro when compared with IR-52-treated controls. These results suggest that B cell autoreactivity is a secondary phenomenon that is unimportant during the effector phase of diabetes in nonobese diabetic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号