首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several clones of human eosinophil-derived neurotoxin (EDN) cDNA have been isolated from a lambda gt10 cDNA library prepared from mRNA derived from noninduced HL-60 cells. The amino acid (aa) sequence deduced from the coding sequence of the EDN cDNA is identical to the aa sequence of urinary nonsecretory RNase. Comparison of the aa and/or nucleotide (nt) sequences of EDN and other proteins possessing ribonucleolytic activity, namely bovine seminal RNase, human and rat pancreatic RNases, eosinophil cationic protein (ECP), and human angiogenin, shows extensive identity at half-cystine residues and at aa of active sites. Differences in aa sequences at the active sites are often the result of single nt changes in the codons. The data presented here support the concept of a RNase gene superfamily containing secretory and nonsecretory RNases, angiogenin, EDN and ECP.  相似文献   

2.
The eosinophil granule contains a series of basic proteins, including major basic protein, eosinophil peroxidase, eosinophil-derived neurotoxin (EDN), and eosinophil cationic protein (ECP). Both EDN and ECP are neurotoxins and helminthotoxins. Comparison of the partial N-terminal amino acid sequences of EDN and ECP showed 67% identity; surprisingly, they also showed structural homology to pancreatic ribonuclease (RNase). Therefore, we determined whether EDN and ECP possess RNase enzymatic activity. By spectrophotometric assay of acid soluble nucleotides formed from yeast RNA, purified EDN showed RNase activity similar to bovine pancreatic RNase, whereas ECP was 50 to 100 times less active. The RNase activity associated with ECP was not significantly inhibited after exposure of ECP to polyclonal or monoclonal antibody to EDN. These results indicate that EDN and ECP both possess RNase activity, the RNase activity of EDN and ECP is specific, and EDN and ECP have maintained not only structural but also functional homology to pancreatic RNase.  相似文献   

3.
The human eosinophil granule contains a number of cationic proteins that have been identified and purified to homogeneity, including the major basic protein (MBP), the eosinophil cationic protein (ECP), and the eosinophil-derived neurotoxin (EDN). Because of confusion in the literature regarding the distinctiveness of MBP and ECP, we investigated the immunochemical and physicochemical properties of these purified proteins by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), by specific double antibody radioimmunoassays (RIA) for MBP and ECP, and by fractionation of acid-solubilized eosinophil granules on Sephadex G-50 columns. Analysis of a mixture of the three purified proteins by SDS-PAGE showed that they migrated as three distinct bands with differing m.w. Comparison by specific RIA for MBP and ECP did not demonstrate any appreciable immunochemical cross-reactivities among the three proteins. Sephadex G-50 column fractions of acid-solubilized eosinophil granules were analyzed by RIA and by SDS-PAGE analysis of individual column fractions. MBP, ECP, and EDN eluted at different volumes from Sephadex G-50 columns as determined by RIA and SDS-PAGE. Soluble extracts of eosinophil granules from patients with the hypereosinophilic syndrome contained between six and 64 times more MBP than ECP on a weight basis. These observations demonstrate that MBP, ECP, and EDN are distinctive cationic proteins of the human eosinophil granule and that eosinophil granules from patients with eosinophilia contain considerably greater quantities of MBP than ECP.  相似文献   

4.
Eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) are proteins of the ribonuclease A (RNase A) superfamily that have developed biological properties related to the function of eosinophils. ECP is a potent cytotoxic molecule, and although the mechanism is still unknown this cytotoxic activity has been associated with its highly cationic character. Using liposome vesicles as a model, we have demonstrated that ECP tends to disrupt preferentially acidic membranes. On the basis of structure analysis, ECP variants modified at basic and hydrophobic residues have been constructed. Changes in the leakage of liposome vesicles by these ECP variants have indicated the role of both aromatic and basic specific amino acids in cellular membrane disruption. This is the case with the two tryptophans at positions 10 and 35, but not phenylalanine 76, and the two arginines 101 and 104. The bactericidal activity of both native ECP and point-mutated variants, tested against Escherichia coli and Staphylococcus aureus, suggests that basic amino acids play, in addition to the effect on the disruption of the cellular membrane, other roles such as specific binding on the surface of the bacteria cell.  相似文献   

5.
Major basic protein (MBP), an arginine-rich basic polypeptide that constitutes the crystalloid core of the large specific eosinophil granule, has previously been shown to stimulate noncytolytic histamine release from human basophils and rat mast cells by an IgE-independent mechanism. Two additional basic polypeptides present in eosinophil granules, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), were examined for similar activity in the present study. Acid-solubilized eosinophil granules were fractionated by chromatography on a Sephadex G-50 column. Incubation of basophil-containing human mononuclear cells with the individual column fractions demonstrated that histamine release occurred only with the fractions that contained MBP. The selectivity of the basophil response for MBP was confirmed by using equimolar concentrations of purified MBP, ECP, and EDN. In contrast, both MBP and ECP, but not EDN, stimulated histamine release from purified rat peritoneal mast cells. Reduction and alkylation of the MBP molecule diminished the response of human basophils to MBP but enhanced the potency of the molecule with rat mast cells. The distinct potency of MBP as a stimulus for histamine secretion from human basophils suggests that eosinophil release of MBP may be a specific event in the augmentation of immediate hypersensitivity reactions and other disorders characterized by eosinophilia.  相似文献   

6.
The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity   总被引:5,自引:0,他引:5  
The eosinophil cationic protein (ECP) is a specific cytotoxic constituent of granules. In this work we demonstrated that ECP has a ribonuclease activity. Purified ECP was resolved by ion exchange chromatography into subfractions, which all showed ribonuclease activity. Another eosinophil granule protein, EPX, identical with eosinophil-derived neurotoxin (EDN) had a 125-fold higher RNase activity than ECP. ECP may exert its cytotoxic effects on parasites and cells because of its extreme basicity alone or it may be internalized and act by degrading mRNA.  相似文献   

7.
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme.  相似文献   

8.
Eosinophil cationic protein (ECP) is one of two RNase A-superfamily ribonucleases found in secretory granules of human eosinophilic leukocytes. Although the physiologic function of eosinophils [and thus of the two eosinophil ribonucleases, ECP and eosinophil-derived neurotoxin (EDN)] remains controversial, we have recently shown that isolated human eosinophils promote ribonuclease-dependent toxicity toward extracellular virions of the single-stranded RNA virus, respiratory syncytial virus, group B (RSV-B). We have also shown that recombinant human EDN (rhEDN) can act alone as a ribonuclease-dependent antiviral agent. In this work, we provide a biochemical characterization of recombinant human ECP (rhECP) prepared in baculovirus, and demonstrate that rhECP also promotes ribonuclease-dependent antiviral activity. The rhECP described here is N-glycosylated, as is native ECP, and has approximately 100-fold more ribonuclease activity than non-glycosylated rhECP prepared in bacteria. The enzymatic activity of rhECP was sensitive to inhibition by placental ribonuclease inhibitor (RI). Although rhECP was not as effective as rhEDN at reducing viral infectivity (500 nM rhECP reduced infectivity of RSV-B approximately 6 fold; 500 nM rhEDN, >50 fold), the antiviral activity appears to be unique to the eosinophil ribonucleases; no reduction in infectivity was promoted by bovine RNase A, by the amphibian ribonuclease, onconase, nor by the closely-related human ribonuclease, RNase k6. Interestingly, combinations of rhEDN and rhECP did not result in either a synergistic or even an additive antiviral effect. Taken together, these results suggest that that the interaction between the eosinophil ribonucleases and the extracellular virions of RSV-B may be specific and saturable.  相似文献   

9.
Eosinophil infiltration and degranulation around the tissue-invasive stages of several species of helminths have been observed. Release of eosinophil granule contents upon the worms is supported by localization of two of the major granule proteins, major basic protein (MBP) and eosinophil peroxidase (EPO), on and around species of trematodes, nematodes, and cestodes. In the case of filarial worms, MBP is deposited on degenerating microfilariae (mf) of Onchocerca volvulus. Here, we performed in vitro assays of the toxicity of four purified eosinophil granule proteins, namely, MBP, EPO, eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (EDN), for the mf of Brugia pahangi and Brugia malayi. MBP, ECP, and EDN killed these worms in a dose-related manner although relatively high concentrations of EDN were necessary. EPO, in the presence of a H2O2-generating system and a halide, was the most potent toxin on a molar basis; here, the most potent halide was I- followed by Br- and Cl-. Surprisingly, EPO in the absence of H2O2 killed mf at concentrations comparable to those required for MBP and ECP. The toxicity of EPO + H2O2 + halide was inhibited by heparin, catalase, or 1% BSA, whereas the toxicity of EPO alone was inhibited only by heparin. Heparin also inhibited killing by both MBP and ECP. Despite the homology of ECP with certain RNases, placental RNasin, an RNase inhibitor, was unable to inhibit ECP-mediated toxicity. These results indicate that all of the eosinophil granule proteins are toxic to mf and they support the hypothesis that eosinophil degranulation causes death of mf in vivo.  相似文献   

10.
Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor   总被引:29,自引:0,他引:29  
Human cDNAs coding for angiogenin, a human tumor derived angiogenesis factor, were isolated from a cDNA library prepared from human liver poly(A) mRNA employing a synthetic oligonucleotide as a hybridization probe. The largest cDNA insert (697 base pairs) contained a short 5'-noncoding sequence followed by a sequence coding for a signal peptide of 24 (or 22) amino acids, 369 nucleotides coding for the mature protein of 123 amino acids, a stop codon, a 3'-noncoding sequence of 175 nucleotides, and a poly(A) tail. The gene coding for human angiogenin was then isolated from a genomic lambda Charon 4A bacteriophage library employing the cDNA as a probe. The nucleotide sequence of the gene and the adjacent 5'- and 3'-flanking regions (4688 base pairs) was then determined. The coding and 3'-noncoding regions of the gene for human angiogenin were found to be free of introns, and the DNA sequence for the gene agreed well with that of the cDNA. The gene contained a potential TATA box in the 5' end in addition to two Alu repetitive sequences immediately flanking the 5' and 3' ends of the gene. The third Alu sequence was also found about 500 nucleotides downstream from the Alu sequence at the 3' end of the gene. The amino acid sequence of human angiogenin as predicted from the gene sequence was in complete agreement with that determined by amino acid sequence analysis. It is about 35% homologous with human pancreatic ribonuclease, and the amino acid residues that are essential for the activity of ribonuclease are also conserved in angiogenin. This provocative finding is thought to have important physiological implications.  相似文献   

11.
Eosinophils have been implicated in both in vivo and in vitro destruction of helminths. One approach toward elucidating the role of the eosinophil in parasite killing has been to test the toxicity of purified eosinophil granule proteins for parasites in vitro. Previously, major basic protein (MBP) and eosinophil cationic protein (ECP) were shown to be toxic for schistosomules of Schistosoma mansoni, while eosinophil-derived neurotoxin (EDN) was only marginally so. We tested the toxicity of MBP, ECP, and EDN over a range of concentrations (0.006-5 X 10(-4) M) for newborn larvae of Trichinella spiralis. Our observations confirm previous reports of toxicity of mildly reduced and alkylated (R & A) MBP. At concentrations of 5 X 10(-5) M and above, R & A MBP killed 75% or more of the larvae within the first hour of culture. ECP was an effective toxin for these larvae after 3 hr of culture, and by 12 hr, dose-related toxicity was evident. After 24 hr, 100% of the larvae were killed at 5 X 10(-5) M ECP. EDN was much less toxic; after 12 hr, 90% of the larvae survived at concentrations of 1 X 10(4) M, while 5 X 10(-4) M EDN killed all the larvae. At the optimal toxic concentrations of 5 X 10(-5) M ECP and 5 X 10(-4) M EDN, kinetics of killing by these 2 proteins were essentially the same. Thus, on a molecular basis, both MBP and ECP appear to be potent helminthotoxins whereas EDN is much less so.  相似文献   

12.
The eosinophil granule proteins, major basic protein (MBP) and eosinophil cationic protein (ECP), activate mast cells during inflammation; however the mechanism responsible for this activity is poorly understood. We found that some theoretical tryptase-digested fragments of MBP and ECP induced degranulation of human cord blood-derived mast cells (HCMCs). The spectrum of activities of these peptides in HCMCs coincided with intracellular Ca2+ mobilization activities in Mas-related G-protein coupled receptor family member X2 (MRGPRX2)-expressing HEK293 cells. Two peptides corresponding to MBP residues 99–110 (MBP (99–110)) and ECP residues 29–45 (ECP (29–45)), respectively, induced degranulation of HCMCs and intracellular Ca2+ mobilization in MRGPRX2-expressing HEK293 cells in a concentration-dependent manner. Stimulation with MBP (99–110) or ECP (29–45) induced the production of prostaglandin D2 by HCMCs. The activities of MBP (99–110) and ECP (29–45) in both HCMCs and MRGPRX2-expressing HEK293 cells were inhibited by MRGPRX2-specific antagonists. In conclusion, these results indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2. Our findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRGPRX2 pathway may further our understanding of mast cell/eosinophil communication.  相似文献   

13.
We examined the bactericidal activity of two proteins that are abundant in the cytoplasmic granules of human eosinophils, major basic protein (MBP) and eosinophil cationic protein (ECP). Unlike the human neutrophil's peptide defensins, both MBP and ECP killed stationary phase Staphylococcus aureus 502A in a simple nutrient-free buffer solution. Although MBP also killed Escherichia coli ML-35 with considerable efficacy under these experimental conditions, the in vitro activity of ECP against E. coli was considerably enhanced if mid-logarithmic phase bacteria replaced stationary phase organisms or if the assay medium was enriched with trypticase soy broth. The antibacterial activity of both eosinophil proteins was modulated by incubation time, protein concentration, temperature and pH. A pBR322-transformed derivative of E. coli ML-35 was used to examine the effects of ECP and MBP on integrity of the bacterial inner membrane (IM) and outer membrane. Although both MBP and ECP caused outer and inner membrane permeabilization when nutrients were present, only MBP was effective under nutrient-free conditions. Two proton ionophores (DNP and carbonyl cyanide m-chlorophenyl hydrazone) protected E. coli from the bactericidal effects of ECP but not from MBP. These findings establish that MBP and ECP have bactericidal properties and suggest that these proteins kill E. coli by similar but nonidentical mechanisms marked by an attack on the target cell's membranes. In view of evidence that high concentrations of ECP and MBP exist in cytoplasmic granules whose contents are translocated to phagocytic vacuoles, we suggest that MBP and ECP contribute to the eosinophil's ability to kill ingested bacteria.  相似文献   

14.
The human eosinophil granule ribonuclease, eosinophil‐derived neurotoxin (EDN) has been shown to have antiviral activity against respiratory syncytial virus‐B (RSV‐B). Other closely related and more active RNases such as RNase A, onconase, and RNase k6 do not have any antiviral activity. A remarkable unique feature of EDN is a nine‐residue insertion in its carboxy‐terminal loop, L7 which is not present in RNase A, and differs in sequence from the corresponding loop in another eosinophil RNase, eosinophil cationic protein (ECP). ECP has a much lower antiviral activity as compared to EDN. The current study probed the role of loop L7 of EDN in its antiviral activity. Three residues in loop L7, Arg117, Pro120, and Gln122, which diverge between EDN, ECP, and RNase A, were mutated to alanine alone and in combination to generate single, double, and triple mutants. These mutants, despite having RNase activity had decreased antiviral activity towards RSV suggesting the involvement of loop L7 in the interaction of EDN with RSV. It appears that the mutations in loop L7 disrupt the interaction of protein with the viral capsid, thereby inhibiting its entry into the virions. The study demonstrates that besides the RNase activity, loop L7 is another important determinant for the antiviral activity of EDN. J. Cell. Biochem. 113: 3104–3112, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.  相似文献   

16.
Eosinophil cationic protein (ECP) is a component of the eosinophil granule matrix. It shows marked toxicity against helminth parasites, bacteria single-stranded RNA viruses, and host epithelial cells. Secretion of human ECP is related to eosinophil-associated allergic, asthmatic, and inflammatory diseases. ECP belongs to the pancreatic ribonuclease superfamily of proteins, and the crystal structure of ECP in the unliganded form (determined previously) exhibited a conserved RNase A fold [Boix, E., et al. (1999) Biochemistry 38, 16794-16801]. We have now determined a high-resolution (2.0 A) crystal structure of ECP in complex with adenosine 2',5'-diphosphate (2',5'-ADP) which has revealed the details of the ribonucleolytic active site. Residues Gln-14, His-15, and Lys-38 make hydrogen bond interactions with the phosphate at the P(1) site, while His-128 interacts with the purine ring at the B(2) site. A new phosphate binding site, P(-)(1), has been identified which involves Arg-34. This study is the first detailed structural analysis of the nucleotide recognition site in ECP and provides a starting point for the understanding of its substrate specificity and low catalytic efficiency compared with that of the eosinophil-derived neurotoxin (EDN), a close homologue.  相似文献   

17.
S Sorrentino  D G Glitz 《FEBS letters》1991,288(1-2):23-26
The eosinophil cationic protein (ECP), a potent helminthotoxin with considerable neurotoxic activity, was recently shown to also have ribonucleolytic activity. In this work the substrate preference of ECP ribonuclease action was studied in detail. With single-stranded RNA or synthetic polyribonucleotide substrates ECP showed significant but low activity, 70- to 200-fold less than that of bovine RNase A. ECP hydrolyzed RNA more rapidly than it did any synthetic polynucleotide. Poly(U) was degraded more rapidly than poly(C), and poly(A) and double-stranded substrates were extremely resistant. Defined low molecular weight substrates in the form of the 16 dinucleoside phosphates (NpN') and uridine and cytidine 2',3'-cyclic phosphates were tested, and none showed hydrolysis by ECP at a significant rate. The results link ECP ribonucleolytic activity to the 'non-secretory' liver-type enzymes rather than to the 'secretory' pancreatic-type RNases.  相似文献   

18.
The eosinophil cationic protein (ECP) is a small polypeptide that originates from activated eosinophil granulocytes. A wide range of stimuli has been shown to induce the secretion of ECP. The gene that encodes the human ECP is located on chromosome 14, and the protein shares the overall three-dimensional structure and the RNase active-site residues with other proteins in the RNase A superfamily. Several single-nucleotide polymorphisms in the human ECP gene have been currently described. ECP has many biological functions, including an immunoregulatory function, the regulation of fibroblast activity, and the induction of mucus secretion in the airway. Additionally, the protein is a potent cytotoxic molecule and has the capacity to kill mammalian and nonmammalian cells. The purpose of this article was to review the known biological and genetic characteristics of ECP that contribute to the understanding of this protein's role in the development and progression of a wide variety of diseases.  相似文献   

19.
The eosinophil cationic protein (ECP) is a human antimicrobial protein involved in the host immune defense that belongs to the pancreatic RNase A family. ECP displays a wide range of antipathogen activities. The protein is highly cationic and its bactericidal activity is dependant on both cationic and hydrophobic surface exposed residues. Previous studies on ECP by site-directed mutagenesis indicated that the RNase activity is not essential for its bactericidal activity. To further understand the ECP bactericidal mechanism, we have applied enzymatic and chemical limited cleavage to search for active sequence determinants.Following a search for potential peptidases we selected the Lys-endoproteinase, which cleaves the ECP polypeptide at the carboxyl side of its unique Lys residue, releasing the N-terminal fragment (0-38).Chemical digestion using cyanogen bromide released several complementary peptides at the protein N-terminus. Interestingly, ECP treatment with cyanogen bromide represents a new example of selective chemical cleavage at the carboxyl side of not only Met but also Trp residues. Recombinant ECP was denatured and carboxyamidomethylated prior to enzymatic and chemical cleavage. Irreversible denaturation abolishes the protein bactericidal activity.The characterization of the digestion products by both enzymatic and chemical approaches identifies a region at the protein N-terminus, from residues 11 to 35, that retains the bactericidal activity. The most active fragment, ECP(0-38), is further compared to ECP derived synthetic peptides. The region includes previously identified stretches related to lipopolysaccharide binding and bacteria agglutination. The results contribute to define the shortest ECP minimized version that would retain its antimicrobial properties. The data suggest that the antimicrobial RNase can provide a scaffold for the selective release of cytotoxic peptides.  相似文献   

20.
With the use of a high yield prokaryotic expression system, large amounts of human eosinophil cationic protein (ECP) have been obtained. This has allowed a thorough kinetic study of the ribonuclease activity of this protein. The catalytic efficiencies for oligouridylic acids of the type (Up)nU>p, mononucleotides U>p and C>p, and dinucleoside monophosphates CpA, UpA, and UpG have been interpreted by the specific subsites distribution in ECP. The distribution of products derived from digestion of high molecular mass substrates, such as poly(U) and poly(C), by ECP was compared with that of RNase A. The characteristic cleavage pattern of polynucleotides by ECP suggests that an exonuclease-like mechanism is predominantly favored in comparison to the endonuclease catalytic mechanism of RNase A. Comparative molecular modeling with bovine pancreatic RNase A-substrate analog crystal complexes revealed important differences in the subsite structure, whereas the secondary phosphate-binding site (p2) is lacking, the secondary base subsite (B2) is severely impaired, and there are new interactions at the po, Bo, and p-1 sites, located upstream of the P-O-5' cleavable phosphodiester bond, that are not found in RNase A. The differences in the multisubsites structure could explain the reduced catalytic efficiency of ECP and the shift from an endonuclease to an exonuclease-type mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号