首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

2.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Populations at range limits are often characterized by lower genetic diversity, increased genetic isolation and differentiation relative to populations at the core of geographical ranges. Furthermore, it is increasingly recognized that populations situated at range limits might be the result of human introductions rather than natural dispersal. It is therefore important to document the origin and genetic diversity of marginal populations to establish conservation priorities. In this study, we investigate the phylogeography and genetic structure of peripheral populations of the common European wall lizard, Podarcis muralis, on Jersey (Channel Islands, UK) and in the Chausey archipelago. We sequenced a fragment of the mitochondrial cytochrome b gene in 200 individuals of P. muralis to infer the phylogeography of the island populations using Bayesian approaches. We also genotyped 484 individuals from 21 populations at 10 polymorphic microsatellite loci to evaluate the genetic structure and diversity of island and mainland (Western France) populations. We detected four unique haplotypes in the island populations that formed a sub-clade within the Western France clade. There was a significant reduction in genetic diversity (HO, HE and AR) of the island populations in relation to the mainland. The small fragmented island populations at the northern range margin of the common wall lizard distribution are most likely native, with genetic differentiation reflecting isolation following sea level increase approximately 7000 BP. Genetic diversity is lower on islands than in marginal populations on the mainland, potentially as a result of early founder effects or long-term isolation. The combination of restriction to specific localities and an inability to expand their range into adjacent suitable locations might make the island populations more vulnerable to extinction.  相似文献   

4.
White TA  Searle JB 《Molecular ecology》2007,16(10):2005-2016
Populations of many species are currently being fragmented and reduced by human interactions. These processes will tend to reduce genetic diversity within populations and reduce individual heterozygosities because of genetic drift, inbreeding and reduced migration. Conservation biologists need to know the effect of population size on genetic diversity, as this is likely to influence a population's ability to persist. Island populations represent an ideal natural experiment with which to study this problem. In a study of common shrews (Sorex araneus) on offshore Scottish islands, 497 individuals from 13 islands of different sizes and 6 regions on the mainland were trapped and genotyped at eight microsatellite loci. Previous genetic work had revealed that most of the islands in this study were highly genetically divergent from one another and the mainland. We found that most of the islands exhibited lower genetic diversity than the mainland populations. In the island populations, mean expected heterozygosity, mean observed heterozygosity and mean allelic richness were significantly positively correlated with log island size and log population size, which were estimated using habitat population density data and application of a Geographic Information System.  相似文献   

5.
Genetic diversity was estimated by allozyme analysis at 26 loci in black rat populations (Rattus rattus) from 15 western Mediterranean islands (Hyéres, Corsica, Sardinia and related islets). Although overall variability levels were low (H = 0.025), the mean heterozygosity values for the islands were similar to those for three reference mainland populations. Within the islands, however, genetic diversity varied in relation to island size and geographic isolation. In particular, most small insular populations were significantly more variable than those on both large and isolated islands. The generic relationships between island populations were established by FST analyses indicating possible geographic origins and patterns of colonization. The maintenance of unexpectedly high levels of variability in the small island populations is discussed in relation to changes in the demographic and social structure observed in these populations. These island populations of black rat illustrate how genetic diversity may be efficiently maintained in a series of interconnected spatially fragmented populations.  相似文献   

6.
Formica aquilonia wood ants are forest specialists which play a key role in the ecology of forests in Europe. Many of the Scottish populations at the edge of the species distribution range occur in highly fragmented landscapes. We used ten microsatellite loci to study the genetic diversity and structure of populations from two contrasting regions (Inverpolly and the Trossachs) to set the Scottish populations in the context of conspecific populations in mainland Europe. Historically, both study regions have experienced extreme habitat loss and fragmentation over several centuries. Inverpolly has remained fragmented whereas large scale reforestation over the last century has greatly increased the forested area in the Trossachs. Despite the long history of fragmentation, genetic diversity in the Scottish populations was greater than in the populations in mainland Europe. Genetic diversity was similar in the two Scottish regions and no evidence of inbreeding was detected. However, the populations in Inverpolly showed more evidence of genetic bottlenecks, possibly due to more frequent stochastic events such as moorland fires. The ant populations in individual forests were genetically distinct and we detected no contemporary gene flow between forests. The most intensively studied forest where non-native conifer plantations now occupy the matrix between the remaining ancient woodland fragments showed evidence that admixture and gene flow between nests was reducing the past differentiation. This may reflect a dynamic response to the reconnection of previously isolated populations in forest fragments by recent reforestation.  相似文献   

7.
As a consequence of founder effects, small population size and demographic constraints, island populations are often characterized by low genetic diversity and high inbreeding. The effects of inbreeding are more pronounced in haplo-diploid insects like bees than in similar diploid species, because their method of sex determination requires heterozygosity at a sex locus. Inbreeding leads to homozygosity at the sex locus and the production of non-viable diploid males. This means that island populations of bees are particularly prone to extinction. Here we determine the levels of diversity and isolation between islands and mainland populations of the bumble bee Bombus morio in southeast Brazil. We analyzed 659 individuals from 24 populations, sequencing two mitochondrial genes (COI and Cytb) and genotyping all individuals at 14 microsatellite loci. Surprisingly, genetic diversity was high and genetic isolation was low in all populations except Teodoro Sampaio (mainland) and Ilha da Vitória (island). Genetic diversity is not significantly correlated with island area, but is lower in populations that are more distant from the mainland. Except perhaps for Ilha da Vitória, we suggest that the island populations are unlikely to go extinct due to genetic factors. Finally, based on its genetic distance from all other populations, we identify a putative new subspecies in the Teodoro Sampaio region.  相似文献   

8.
The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands.  相似文献   

9.
While habitat fragmentation is a central issue in forest conservation studies in the face of broad-scale anthropogenic changes to the environment, its effects on contemporary mating patterns remain controversial. This is partly because of the inherent variation in mating patterns which may exist within species and the fact that few studies have replication at the landscape level. To study the effect of forest fragmentation on contemporary mating patterns, including effective pollen dispersal, we compared four native populations of the Australian forest tree, Eucalyptus globulus . We used six microsatellite markers to genotype 1289 open-pollinated offspring from paired fragmented and continuous populations on the island of Tasmania and in Victoria on mainland Australia. The mating patterns in the two continuous populations were similar, despite large differences in population density. In contrast, the two fragmented populations were variable and idiosyncratic in their mating patterns, particularly in their pollen dispersal kernels. The continuous populations showed relatively high outcrossing rates (86–89%) and low correlated paternity (0.03–0.06) compared with the fragmented populations (65–79% and 0.12–0.20 respectively). A greater proportion of trees contributed to reproduction in the fragmented ( de/d ≥ 0.5) compared with the continuous populations ( de/d  =   0.03–0.04). Despite significant inbreeding in the offspring of the fragmented populations, there was little evidence of loss of genetic diversity. It is argued that enhanced medium- and long-distance dispersal in fragmented landscapes may act to partly buffer the remnant populations from the negative effects of inbreeding and drift.  相似文献   

10.
The Asiatic wild dog or dhole was once very widely distributed across Asia but now has a very fragmented range. In this first genetic study of this little-known species, we obtained information on genetic diversity, phylogeography, and social structure using both mitochondrial control region sequencing and microsatellite genotyping of noninvasive faecal samples from wild populations, as well as from museum and captive samples. A pattern largely consistent with isolation by distance across the Asian mainland was observed, with no clear subspecies distinctions. However, two major phylogeographical groupings were found across the mainland, one extending from South, Central, and North India (south of the Ganges) into Myanmar, and the other extending from India north of the Ganges into northeastern India, Myanmar, Thailand and the Malaysian Peninsula. We propose a scenario involving glaciation events that could explain this pattern. The origin of the dhole populations in Sumatra and Java is enigmatic and requires further study. Very low levels of genetic diversity were observed among wild dholes from Baluran National Park in Java, Indonesia, but in contrast, high levels were observed in Mudumalai Wildlife Sanctuary in South India.  相似文献   

11.
Owing to habitat loss populations of many organisms have declined and become fragmented. Vertebrate conservation strategies routinely consider genetic factors, but their importance in invertebrate populations is poorly understood. Bumblebees are important pollinators, and many species have undergone dramatic declines. As monoandrous social hymenopterans they may be particularly susceptible to inbreeding due to low effective population sizes. We study fragmented populations of a bumblebee species, on a model island system, and on mainland Great Britain where it is rare and declining. We use microsatellites to study: population genetic structuring and gene flow; the relationships between genetic diversity, population size and isolation; and frequencies of (sterile) diploid males - an indicator of inbreeding. We find significant genetic structuring (theta = 0.12) and isolation by distance. Populations > 10 km apart are all significantly differentiated, both on oceanic islands and on the mainland. Genetic diversity is reduced relative to closely related common species, and isolated populations exhibit further reductions. Of 16 populations, 10 show recent bottlenecking, and 3 show diploid male production. These results suggest that surviving populations of this rare insect suffer from inbreeding as a result of geographical isolation. Implications for the conservation of social hymenopterans are discussed.  相似文献   

12.
We compared levels of genetic diversity and isolation among peregrine falcons Falco peregrinus from two South Pacific island complexes (Fiji and Vanuatu: F. p. nesiotes), relative to other island and mainland populations. Fragment data from 12 microsatellite loci and sequence information from the control region of the mitochondrial DNA indicated levels of genetic variation in the South Pacific populations were lower than other island and mainland populations. Indeed, diversity varied from extremely low (Vanuatu) to completely absent (Fiji). We find little support for a hypothesis that populations on Fiji or Vanuatu were colonized via Australia. The complete lack of polymorphism in peregrine falcons of Fiji is remarkable, and to our knowledge has not been observed in a natural avian population. This lack of polymorphism, and the inability to test for decrease in polymorphism using museum samples, precludes testing whether the lack of genetic diversity in the population on Fiji is due to a recent bottleneck, or sustained isolation over evolutionary time. Increased fertility in eggs of Fiji peregrines upon outbreeding with males from other areas is consistent with inbreeding depression within a population typified by heterozygote deficiency.  相似文献   

13.
Geographic isolation interrupted gene flow between populations leading to population differentiation during the long evolutionary period. In this paper, 33 colonies from Damen Island and 100 colonies from adjacent mainland populations, Juxi and Chixi, were analyzed with both mitochondrial tRNAleu-COII sequences and five microsatellite loci. The results showed that Apis cerana cerana population from Damen Island significantly differentiated from its adjacent mainland populations. In addition, Damen Island population showed a lower level of genetic diversity in terms of the number of mitochondrial haplotypes while both island and mainland populations showed a low level of genetic diversity with mutilocus analysis. The divergent small island population A.c. cerana might probably have suffered inbreeding and genetic drift as well as limited gene flow across the strait. Our data provides useful information for management and preservation for the Damen Island population.  相似文献   

14.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

15.
We present a study of the genetic diversity and structure of a tropical tree in an insular system. Santalum austrocaledonicum is endemic to the archipelago of New Caledonia and is exploited for oil extraction from heartwood. A total of 431 individuals over 17 populations were analysed for eight polymorphic microsatellite loci. The number of alleles per locus ranged from 3 to 33 and the observed heterozygosity per population ranged from 0.01 in Mare to 0.74 in Ile des Pins. The genetic diversity was lowest in the most recent islands, the Loyautes, and highest in the oldest island, Grande Terre, as well as the nearby small Ile des Pins. Significant departures from panmixia were observed for some loci-population combinations (per population FIS = 0-0.03 on Grande-Terre and Ile des Pins, and 0-0.67 on Loyautes). A strong genetic differentiation among all islands was observed (FST = 0.22), and the amount of differentiation increased with geographic distance in Iles Loyaute and in Grande Terre. At both population and island levels, island age and isolation seem to be the main factors influencing the amount of genetic diversity. In particular, populations from recent islands had large average FIS that could not be entirely explained by null alleles or a Wahlund effect. This result suggests that, at least in some populations, selfing occurred extensively. Conclusively, our results indicate a strong influence of insularity on the genetic diversity and structure of Santalum austrocaledonicum.  相似文献   

16.
The levels of genetic diversity and gene flow may influence the long-term persistence of populations. Using microsatellite markers, we investigated genetic diversity and genetic differentiation in island (Krakatau archipelago, Indonesia) and mainland (Java and Sumatra, Indonesia) populations of Liporrhopalum tentacularis and Ceratosolen bisulcatus, the fig wasp pollinators of two dioecious Ficus (fig tree) species. Genetic diversity in Krakatau archipelago populations was similar to that found on the mainland. Population differentiation between mainland coastal sites and the Krakatau islands was weak in both wasp species, indicating that the intervening 40 km across open sea may not be a barrier for wasp gene flow (dispersal) and colonization of the islands. Surprisingly, mainland populations of the fig waSPS may be more genetically isolated than the islands, as gene flow between populations on the Javan mainland differed between the two wasp species. Contrasting growth forms and relative 'immunity' to the effects of deforestation in their host fig trees may account for these differences.  相似文献   

17.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

18.
Many animal populations that are endangered in mainland areas exist in stable island populations, which have the potential to act as an “ark” in case of mainland population declines. Previous studies have found neutral genetic variation in such species to be up to an order of magnitude lower in island compared to mainland populations. If low genetic variation is prevalent across fitness-related loci, this would reduce the effectiveness of island populations as a source of individuals to supplement declining mainland populations or re-establish extinct mainland populations. One such species, the black-footed rock-wallaby (Petrogale lateralis lateralis), exists within fragmented mainland populations and small island populations off Western Australia. We examined sequence variation in this species within a fitness-related locus under positive selection, the MHC class II DAB β1 locus. The mainland populations displayed greater levels of allelic diversity (4–7 alleles) than the island population, despite being small and isolated, and contained at least two DAB gene copies. The island population displayed low allelic diversity (2 alleles) and fewer alleles per individual in comparison to mainland populations, and probably possesses only one DAB gene copy. The patterns of DAB diversity suggested that the island population has a markedly lower level of genetic variation than the mainland populations, in concordance with results from microsatellites (genotyped in a previous study), but preserved unique alleles which were not found in mainland populations. Where possible, conservation actions should pool individuals from multiple populations, not only island populations, for translocation programs, and focus on preventing further declines in mainland populations.  相似文献   

19.
The Amazonian coast has several unique geological characteristics resulting from the interaction between drainage pattern of the Amazon River and the Atlantic Ocean. It is one of the most extensive and sedimentologically dynamic regions of the world, with a large number of continental islands mostly formed less than 10,000 years ago. The natural distribution of the cane toad (Rhinella marina), one of the world’s most successful invasive species, in this complex Amazonian system provides an intriguing model for the investigation of the effects of isolation or the combined effects of isolation and habitat dynamic changes on patterns of genetic variability and population differentiation. We used nine fast-evolving microsatellite loci to contrast patterns of genetic variability in six coastal (three mainlands and three islands) populations of the cane toad near the mouth of the Amazon River. Results from Bayesian multilocus clustering approach and Discriminant Analyses of Principal Component were congruent in showing that each island population was genetically differentiated from the mainland populations. All FST values obtained from all pairwise comparisons were significant, ranging from 0.048 to 0.186. Estimates of both recent and historical gene flow were not significantly different from zero across all population pairs, except the two mainland populations inhabiting continuous habitats. Patterns of population differentiation, with a high level of population substructure and absence/restricted gene flow, suggested that island populations of R. marina are likely isolated since the Holocene sea-level rise. However, considering the similar levels of genetic variability found in both island and mainland populations, it is reliable to assume that they were also isolated for longer periods. Given the genetic uniqueness of each cane toad population, together with the high natural vulnerability of the coastal regions and intense human pressures, we suggest that these populations should be treated as discrete units for conservation management purposes.  相似文献   

20.
海南岛中华蜜蜂遗传多样性的微卫星DNA分析   总被引:1,自引:0,他引:1  
为了解海南岛中华蜜蜂Apis cerana cerana的遗传多样性和遗传结构及其与大陆种群的关系, 本研究应用10个微卫星DNA标记对海南岛11个地点627个蜂群的627头工蜂样本和大陆2个地点102个蜂群的102头工蜂样本进行了分析。结果表明: 海南岛中华蜜蜂遗传多样性较高, 单个位点检测到等位基因5~17个; 各种群平均等位基因数为4.5~7.0个, 平均杂合度为0.59~0.65。海南岛中华蜜蜂在10个位点上表现出相似遗传结构, 文昌和屯昌种群在AT101位点的等位基因频率较特殊。岛内 岛外中华蜜蜂的遗传分化系数FST范围为0.06~0.13; 文昌、 屯昌种群分别同海南岛内其他9个种群的FST(0.06~0.12)大于这9个种群间的FST(0~0.05)。海南岛中华蜜蜂同邻近大陆种群发生了明显的遗传分化; 除文昌、 屯昌种群发生中等程度的分化外, 海南岛内其他种群之间遗传分化较小。本研究结果对海南岛中华蜜蜂资源的保护和合理利用具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号